• Title/Summary/Keyword: oil biodegradability

Search Result 54, Processing Time 0.027 seconds

Comparison of Oil Sorption Capacity and Biodegradability of PP, PP/kapok(10/90wt%) Blend and Commercial(T2COM) Oil Sorbent Pads

  • Lee, Young-Hee;Lee, Eun-Jin;Chang, Gap-Shik;Lee, Dong-Jin;Jung, Young-Jin;Kim, Han-Do
    • Textile Coloration and Finishing
    • /
    • v.26 no.3
    • /
    • pp.151-158
    • /
    • 2014
  • The oil sorption capacities and biodegradability of nonwoven fabrics(pads) of PP and PP/kapok(10/90wt%) blend prepared in this study and commercial pad(T2COM: 100% PP) were compared. The biodegradability(58.5%) of PP/kapok(10/90wt%) blend pad was about 5times higher than those(11%) of PP and T2COM pads after 45days. The oil sorption rates of oil sorbent pads for various oils(diesel, lubricant and Bunker C oils) were markedly increased with increasing dipping time up to about 5min and then levelled off. The oil sorption rate and oil sorption capacity were found to increase in the order of PP/kapok(10/90wt%) blend>PP>commercial(T2COM) and Bunker C>lubricant>diesel.

Biodegradibility Tests of Biodiesel-derived Pentaerythritol Lubricant Oil Bases (바이오디젤 유래 펜타에리쓰리톨계 윤활유 베이스의 생분해성 테스트)

  • 정해영;김의용;채희정
    • KSBB Journal
    • /
    • v.19 no.2
    • /
    • pp.132-137
    • /
    • 2004
  • Biodegradability test for various synthetic lubricant oil bases derived from biodiesel was carried out. The biodegradability was estimated under aerobic aqueous condition, according to the method by OECD 301 B, which is based on CO$_2$ evolution test. The ultimate biodegradability of pentaerythritol methyl esters were estimated as 61.1∼80.3%, at 28 day with which the test compounds were indicated as ultimately biodegradable. Among the tested samples, biodiesel showed the highest biodegradability (83.5%). The validation with several criteria, regarding relative errors of test results, toxicity control and procedure control, was performed through the biodegradability test. The test procedure was validated for all the tested lubricant oil bases and biodiesel, except for petroleum diesel.

Production of Biodiesel from Yellow Oleander (Thevetia peruvian) Oil and its Biodegradability

  • Yarkasuwa, Chindo Istifanus;Wilson, Danbature;Michael, Emmanuel
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.3
    • /
    • pp.377-381
    • /
    • 2013
  • Thevetia peruviana (Yellow Oleander) seed oil was extracted with n-hexane in a soxhlet extractor. The ethanolysis and methanolysis of the oil were carried out with 50% of potassium hydroxide in ethanol and methanol respectively by weight of oil, as catalyst. The biodiesel was tested for biodegradability using E. coli. The percentage yield of the FAEE and FAME were 84.8% and 91.6% respectively. The biodegradability values of 81.4% and 86.2% were obtained for FAEE and FAME respectively after a period of 28 days. Other fuel quality parameters determined are the cetane index of 47.19 (FAEE) and 58.97 (FAME), flash point of $198^{\circ}C$ (FAEE) and $175^{\circ}C$ (FAME), kinematic viscosity at $40^{\circ}C$ of 5.21 $mm^2s^{-1}$ (FAEE) and 5.10 $mm^2s^{-1}$(FAME), pour point of $4^{\circ}C$ (FAEE) and $-2^{\circ}C$ (FAME) and a cloud point of $6^{\circ}C$ (FAEE) and $3^{\circ}C$ (FAME). Thus, Thevetia peruviana oil has a high potential for use in production of environmentally friendly biodiesel.

A study on Biodegradability of Vegetable Oil based EP Grease (식물유계 EP그리스의 생분해도 평가에 관한 연구)

  • Nam Kyung-Im;Kim Young-wun;Chung Keunwo;Cho Wonoh;Jeon In-sik;Chung Yong-Mi
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.139-148
    • /
    • 2003
  • In this study, biodegradable base Li-greases were prepared by using Li-soap thickener and vegetable oils such as soybean oil, rapeseed oil, castor oil and synthetic ester. Also, EP-greases were formulated by blending base Li-greases, anti-wear additives, EP additives, anti-oxidants and corrosion inhibitor etc. And EP-greases were characterized by analysing physical properties such as worked penetration, dropping point, 4-ball wear, extreme pressure, thermal properties etc. Biodegradability of base Li-greases and EP-greases were evaluated by CEC-L-33-A-93 method using several inoculums of domestic sewage treatment plant. As the results, biodegradability of vegetable oils were shown at the range of 97.1 to $98.4\%$. And biodegradability of base Li-greases and EP-greases were $86.2\%\;\~\;89.3\%\;and\;83.4\%\;\~\;90.0\%$ which were lower value than those o( vegetable oils due to effect of Li-soap thickener, respectively. Therefore, the EP-greases prepared in this study were easily biodegraded by microorgnism.

  • PDF

The Biodegradation Characteristics of the Mixtures of Bunker-A, B Oils with Dispersants in the Seawater

  • BAEK Joong-Soo;KIM Gwang-Su;CHO Eun-il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.6
    • /
    • pp.787-796
    • /
    • 1996
  • The biodegradation experiment, the TOD analysis and the element analysis for dispersant, Bunker-A oil and Bunker-B oil were conducted to study the biodegradation characteristics of a mixture of Bunker-A oil with dispersant and a mixture of Bunker-B oil with dispersant in the seawater. The results of biodegradation experiment showed 1mg of dispersant to be equivalent to 0.26 mg of $BOD_5$ and to 0.60 mg of $BOD_{20}$ in the natural seawater. The results of TOD analysis showed each 1 mg of dispersant, Bunker-A oil and Bunker-B oil to be equivalent to 2.37 mg, 2.94 mg and 2.74 mg of TOD, respectively. The results of element analysis showed carbon, hydrogen, nitrogen and phosphorus contents of dispersant to be $82.1\%,\;13.8\%,\;1.8\%\;and\;2.2\%$, respectively. Carbon and hydrogen contents of Bunker-A oil were found to be $73.3\%\;and\;13.5\%$, respectively, and carbon, hydrogen and nitrogen contents of Bunker-B oil to be $80.4\%,\;12.3\%\;and\;0.7\%$, respectively. Accordingly, the detection of nitrogen and phosphorus in dispersant shows that dispersants should be used with caution in coastal waters, with relation to eutrophication. The biodegradability of dispersant expressed as the ratio of $BOD_5/TOD$ was found to be $11.0\%$. As the mix ratios of dispersant to Bunker-A oil (3 mg/l) and a mixture of Bunker-B oil (3mg/l) were changed from 1 : 10 to 5 : 10, the biodegradabilities of a mixture of Bunker-A oil with dispersant and Bunker-B oil with dispersant increased from $2.1\%\;to\;7.2\%$ and from $1.0\%\;to\;4.4\%$, respectively. Accordingly, the dispersant belongs to the organic matter group of middle-biodegradability while mixtures in the mix ratio range of $1:10\~5:10$ belong to the organic matter group of low-biodegradability. The deoxygenation rate constant $(K_1)$ and ultimate biochemical oxygen demand $(L_0)$ obtained from the biodegradation experiment and Thomas slope method were found to be 0.125/day and 2.487 mg/l for dispersant (4 mg/l), respectively. $K_1\;and\;L_0$, were found to be $0.079\~0.131/day$ and $0.318\~2.052\;mg/l$ for a mixture of Bunker-A oil with dispersant and to be $0.106\~0.371/day$ and $0.262\~1.106\;mg/l$ for a mixture of Bunker-B oil with dispersant, respectively, having $1:10\~5:10$ mix ratios of dispersant to Bunker-A oil and Bunker-B oil. The ultimate biochemical oxygen demands of the mixtures increased as the mix ratio of dispersant to Bunker-A, B oils changed from 1 : 10 to 5 : 10. This suggests that the more dispersants are applied to the sea for the cleanup of Bunker-A oil or Bunker-B oil, the more decreases the dissolved oxygen level in the seawater.

  • PDF

Research of Accelerated Aging According to Long-term Stability of Vegetable Oil (식물성절연유의 가속열화에 따른 장기적 안정성 분석)

  • Choi, Sun-Ho;Huh, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.8
    • /
    • pp.1148-1152
    • /
    • 2012
  • The vegetable-based insulating oils are substitutes for mineral oils in oil-filled transformer. The important properties of vegetable insulating oil is their higher flash/fire point and biodegradability than conventional mineral oils. The large oil-filled transformer eliminate the risk of explosion and fire should the transformer fail and oil ignite owing to high flash/fire point of vegetable insulating oil. In addition, higher biodegradability of vegetable insulating oils can let the oil spill damage reduced. In this experiment, the real oil-filled transformers using mineral oil and vegetable oil have accelerated aging. After working on the 100% accelerated aging experiment were conducted comparing the transformer. The hottest-spot temperature using thermal coefficients were calculated to determin the degree of accelerated aging. As a result, apply mineral oil transformer in accordance with the accelerated aging life come to an end. In contrast, vegetable insulating oils showed the opposite characteristics. Vegetable insulating oil compared to the mineral oil are found to be an long life. As a result, the vegetable oil has a long-term stability.

Performance of environment friendly insulating dielectric oil for power transformer (친환경 변압기 절연유의 특성)

  • Han, Dong-Hee;Cho, Han-Goo;Han, Se-Won;Ahn, Myung-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.453-456
    • /
    • 2004
  • This paper surveys the latest findings on vegetable-oil-based dielectric coolants in power systems. In recent years, environmental concerns have been increased on the use of poorly biodegradable mineral oils in distribution and power transformers in regions where spills from leaks and equipment failure could contaminate the surroundings. In addition, there are demands to improve equipment efficiencies in power systems. In this reason, researches were started in the mid 1990s to develop a fully biodegradable dielectric coolants. Vegetable oil was considered the most likely candidate for a fully biodegradable dielectric coolants. Vegetable-oil-based dielectric coolants provide the advantages of high level of biodegradability, renewable natural resource, non-toxic properties, enhanced fire safety, more effective cooling and good dielectric strength for many electrical equipment.

  • PDF

Production and Biodegradability of Biodiesel from Balanites Aegyptiaca Seed Oil (Balanites Aegyptiaca 씨기름으로부터 바이오디젤의 생산과 생분해성 연구)

  • Jauro, Aliyu;Adams, Momoh Haruna
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.4
    • /
    • pp.680-684
    • /
    • 2011
  • Seed oil of Balanites aegyptica was transesterified to produce biodiesel and its quality and biodegradability assessed. The specific gravity (SG), density and flash point of the methyl esters were found to be 0.897, 0.89 g/$cm^3$ and $163^{\circ}C$ respectively. Biodegradability of the biodiesel assessed by the standard $CO_2$ evolution method using two different inoculums revealed that the Balanites aegyptica biodiesel was readily biodegradable in both inoculums (82.58% and 86.98%), compared with the $D_2$ diesel which was partially biodegradable (27.02% and 27.33%). These suggest that Balanites aegyptiaca seed oil is a potential source of environmentally friendly biodiesel.

Study on the Biodegradability of Dispersants and Dispersant/Bunker-C Oil Mixtures and the Dissolved Oxygen Consumption in the Seawater(II) - The Biodegradability of Dispersant/Bunker-C Oil Mixtures and the Dissolved Oxygen Consumption in the Seawater - (해수중에서 유처리제 및 유처리제/Bunker-C유 혼합물의 생분해도와 용존산소소비에 관한 연구(II) - 유처리제/Bunker-C유 혼합물의 생분해도와 용존산소소비 -)

  • KIM Gwang-Su;PARK Chung-Kil;KIM Jong-Gu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.6
    • /
    • pp.519-528
    • /
    • 1993
  • The biodegradation experiment, the TOD analysis and the element analysis for dispersant, Bunker-C and dispersant/Bunker-C oil mixtures were conducted for the purposes of evaluating the biodegradability of dispersnat/Bunker-C oil mixtures and studying the consumption of dissolved oxygen with relation to biodegradation in the seawater. The results of biodegradation experiment showed the mixtures with $1:10{\sim}5:10$ mix ratios of dispersant to 4mg/l of Bunker-C oil to be $0.34{\sim}2.06mg/l$ of $BOD_5$ and to be $1.05{\sim}5.47mg/l$ of $BOD_{20}$ in natural seawater. The results of TOD analysis showed 1mg of Bunker-C oil to be 3.16mg of TOD. The results of element analysis showed the contents of carbon and hydrogen to be $87.3\%\;and\;11.5\%$ for Bunker-C oil, respectively, but nitrogen element was not detected in Bunker-C oil. The biodegradability of dispersant/Bunker-C oil mixture shown as the ratio of $BOD_5$/TOD was increased from $3\%\;to\;11\%$ as a mix ratio of dispersant to 4mg/l of Bunker-C oil changed from 1:10 to 5:10, and the mixtures were found to belong in the organic matter group of low-biodegradability. The deoxygenation rates($K_1$) and ultimate oxygen demands($L_o$) obtained through the biodegration experiment and Thomas slope method were found to be $0.072{\sim}0.097/day$ and $1.113{\sim}6.746mg/l$ for the mixtures with $1:10{\sim}5:10$ mix ratios of dispersant to 4mg/l of Bunker-C oil, respectively. The ultimate oxygen demand of mixture was increased as a mix ratio of dispersant to Bunker-C oil changed from 1:10 to 10:5. This means that the more dispersants are applied to the sea for Bunker-C oil cleanup, the more decreases the dissolved oxygen level in the seawater.

  • PDF

Preparation of Biodegradable Oil Gelling Agent and Biodegradation Characteristics by Enzyme (생분해성 유류고형화제의 제조와 효소에 의한 생분해 특성)

  • Kim Jung-Du;Yoo Su-Yong;Lee Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.14 no.10
    • /
    • pp.973-978
    • /
    • 2005
  • Biodegradable oil gelling agent was prepared, and their oil absorption capacities using light oil, lubricant oil and corn oil were investigated. The result showed that the oil absorption capacity was depended on the amount of surfactant and starch added, and was increased in the order of light oil, lubricant oil and corn oil. Also, the oil-absorption capacity was saturated within 30 min at $18^{\circ}C$. The biodegradability of the prepared biodegradable oil gelling agent was also studied by determination of reduced sugar produced after enzymatic hydrolysis. Their surface morphologies and thermal properties of the prepared biodegradable oil gelling agent were observed by scanning electron microscopy (SEM) and thermogravimetric analysis (TGA), respectively.