• Title/Summary/Keyword: oil adsorption

Search Result 159, Processing Time 0.04 seconds

Surface Modification of PDMS for Hydrophilic and Antifouling Surface Using PEO-PPO-PEO Block Copolymer (PEO-PPO-PEO 블록 공중합체를 이용한 PDMS의 친수성 표면 개질 방법)

  • Lee, Byungjin;Jin, Si Hyung;Jeong, Seong-Geun;Kang, Kyoung-Ku;Lee, Chang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.791-797
    • /
    • 2017
  • In this study, we optimized a method of PEO-PPO-PEO block copolymer embedding, for solving non-specific protein and biomolecular adsorption and high hydrophobicic surface property, which is widely known as problems of poly (dimethylsiloxane) (PDMS) that has frequently been used in basic biological and its applied research. We assessed its surface modification by controlling the concentration of embedded block copolymer, water-soaking time, and recovery time as variables by contact angle measurements. In order to evaluate its antifouling ability, adsorption of FITC-BSA molecules was quantified. Furthermore, we generated oil-in-water (O/W) emulsion as a proof-of-concept experiment to confirm that the optimized surface modification works properly.

Changes of Functional Properties of Acylated Fish Protein (Acyl화에 의한 어류 단백질의 이화학적 성질의 변화)

  • Bang, Chan-Sik;Kim, Ze-Uook
    • Applied Biological Chemistry
    • /
    • v.33 no.1
    • /
    • pp.52-61
    • /
    • 1990
  • Fish protein was acylated with acetic anhydride(AA), succinic anhydride(SA) and maleic anhydride(MA) in order to improve the functional properties of the protein. The surface hydrophobicity and functional properties of protein were measured to study the relationship between them. It was found that the extented acylation of nucleophilic groups such as amino and sulfhydryl groups of the amino acid residues of fish protein was higher than other groups when acylated with AA, and the degree of acylation was 89.5 % for amino groups and 72.2 % for sulfhydryl groups. The surface hydrophobicity of fish protein was decreased by succinylation and maleylation, whereas acetylation caused tittle change. The acylated fish protein concentrate(FPC) showed higher surface hydrophobicity than the acylated fish myofibrilla protein(FMP). Acylation with AA, SA and MA of fish protein resulted in a significant increase in protein solubility, emulsifier properties, foaming properties, water adsorption capacity and oil adsorption capacity. These properties of acylated FMP were more improved than those of acylated FPC. Decrease in protein hydrophobicity was highly correlated with increase in protein solubility, and emulsifier properties and foaming properties were largely dependent on the solubility as well as surface hydrophobicity. The water adsorption capacity of the protein was significantly affected by solubility. Surface hydrophobicity had greater influence on oil adsorption capacity, whereas it had tittle effect on water adsorption capacity.

  • PDF

Sustainable Development of Palm Oil: Synthesis and Electrochemical Performance of Corrosion Inhibitors

  • Porcayo-Calderon, J.;Rivera-Munoz, E.M.;Peza-Ledesma, C.;Casales-Diaz, M.;de la Escalera, L.M. Martinez;Canto, J.;Martinez-Gomez, L.
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.133-145
    • /
    • 2017
  • Palm oil production is among the highest worldwide, and it has been mainly used in the food industry and other commodities. Currently, a lot of palm oil production has been destined for the synthesis of biodiesel; however, its use in applications other than the food industry has been questioned. Thereby for a sustainable development, in this paper the use of palm oil of low quality for corrosion inhibitors synthesis is proposed. The performance of the synthesized inhibitors was evaluated by using electrochemical techniques such as open circuit potential measurements, linear polarization resistance and electrochemical impedance spectroscopy. The results indicate that the fatty amides from palm oil are excellent corrosion inhibitors with protection efficiencies greater than 98%. Fatty amides molecules act as cathodic inhibitors decreasing the anodic dissolution of iron. When fatty amides are added, a rapid decrease in the corrosion rate occurs due to the rapid formation of a molecular film onto carbon steel surface. During the adsorption process of the inhibitor a self-organization of the hydrocarbon chains takes place forming a tightly packed hydrophobic film. These results demonstrate that the use of palm oil for the production of green inhibitors promises to be an excellent alternative for a sustainable use of the palm oil production.

PDMS (Polydimethylsilioxane)-Coated Silica Nanoparticles for Selective Removal of Oil and Organic Compound from Water

  • Cho, Youn Kyoung;Kim, Dae Han;Yoon, Hye Soo;Jeong, Bora;Kim, Young Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.257-257
    • /
    • 2013
  • In order to selectively remove oil and organic compound from water, silica nanoparticles with hydrophobic coating was used. Since silica nanoparticles are generally hydrophilic, removal efficiency of oil and organic compound, such as toluene, in water can be decreased due to competitive adsorption with water. In order to increase the removal efficiency of oil and toluene, hydrophobic polydimethylsiloxane (PDMS) was coated on silica nanoparticles in the form of thin film. Hydrophobic property of the PDMS-coated silica nanoparticles and hydrophilic silica nanoparticles were easily confirmed by putting it in the water, hydrophilic particle sinks but hydrophobic particle floats. PDMS coated silica nanoparticles were dispersed on a slide glass with epoxy glue on and the water contact angle on the surface was determined to be over $150^{\circ}$, which is called superhydrophobic. FT-IR spectroscopy was used to check the functional group on silica nanoparticle surface before and after PDMS coating. Then, PDMS coated silica nanoparticles were used to selectively remove oil and toluene from water, respectively. It was demonstrated that PDMS coated nanoaprticles selectively aggregates with oil and toluene in the water and floats in the form of gel and this gel remained floating over 7 days. Furthermore, column filled with hydrophobic PDMS coated silica nanoparticles and hydrophilic porous silica was prepared and tested for simultaneous removal of water-soluble and organic pollutant from water. PDMS coated silica nanoparticles have strong resistibility for water and has affinity for oil and organic compound removal. Therefore PDMS-coated silica nanoparticles can be applied in separating oil or organic solvents from water.

  • PDF

A Lipopeptide Biosurfactant Produced by Bacillus subtilis C9 Selected through the Oil Film-collapsing Assay

  • Kim, Hee-Sik;Lee, Chang-Ho;Suh, Hyun-Hyo;Ahn, Keug-Hyun;Oh, Hee-Mock;Kwon, Gi-Seok;Yang, Ji-Won;Yoon, Byung-Dae
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.3
    • /
    • pp.180-188
    • /
    • 1997
  • Bacillus subtilis C9 was selected by measuring the oil film-collapsing activity and produced biosurfactant in a medium containing glucose as a sole carbon source. The biosurfactant emulsified hydrocarbons, vegetable oils and crude oil, and lowered the surface tension of culture broth to 28 dyne/cm. A biosurfactant, C9-BS produced by B. subtilis C9 was purified by ultrafiltration, extraction with chloroform and methanol, adsorption chromatography, and preparative reversed phase HPLC. Structural analyses, IR spectroscopy, FAB mass spectroscopy, amino acid composition, and NMR analyses, demonstrated that C9-BS was a lipopeptide comprising a fatty acid tail and peptide moiety. The lipophilic part consisting of $C_{14}\;or\;C_{15}$ hydroxy fatty acid was linked to the hydrophilic peptide part, which contained seven amino acids (Glu-Leu-Leu-Val-Asp-Leu-Leu) with a lactone linkage.

  • PDF

Physicochemical properties and methane adsorption performance of activated carbon nanofibers with different types of metal oxides

  • Othman, Faten Ermala Che;Yusof, Norhaniza;Hasbullah, Hasrinah;Jaafar, Juhana;Ismail, Ahmad Fauzi;Nasri, Noor Shawal
    • Carbon letters
    • /
    • v.24
    • /
    • pp.82-89
    • /
    • 2017
  • In this study, composite PAN-based ACNFs embedded with MgO and $MnO_2$ were prepared by the electrospinning method. The resultant pristine ACNFs, ACNF/MgO and $ACNF/MnO_2$ were characterized in terms of their morphological changes, SSA, crystallinity and functional group with FESEM-EDX, the BET method, XRD and FTIR analysis, respectively. Results from this study showed that the SSA of the ACNF/MgO composite ($1893m^2g^{-1}$) is significantly higher than that of the pristine ACNFs and $ACNF/MnO_2$ which is 478 and $430m^2g^{-1}$, respectively. FTIR analysis showed peaks of 476 and $547cm^{-1}$, indicating the presence of MgO and $MnO_2$, respectively. The FESEM micrographs analysis showed a smooth but coarser structure in all the ACNFs. Meanwhile, the ACNF/MgO has the smallest fiber diameter ($314.38{\pm}62.42nm$) compared to other ACNFs. The presence of MgO and $MnO_2$ inside the ACNFs was also confirmed with EDX analysis as well as XRD. The adsorption capacities of each ACNF toward $CH_4$ were tested with the volumetric adsorption method in which the ACNF/MgO exhibited the highest $CH_4$ adsorption up to $2.39mmol\;g^{-1}$. Meanwhile, all the ACNF samples followed the pseudo-second order kinetic model with a $R^2$ up to 0.9996.

Mg/Al Impregnated Biochar for the Removal and Recovery of Phosphates and Nitrate

  • Kim, Dong-Jin
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2019.10a
    • /
    • pp.134-134
    • /
    • 2019
  • Utilization of organic waste as a renewable energy source is promising for sustainability and mitigation of climate change. Pyrolysis converts organic waste to gas, oil, and biochar by incomplete biomass combustion. Biochar is widely used as a soil conditioner and adsorbent. Biochar adsorbs/desorbs metals and ions depending on the soil environment and condition to act as a nutrient buffer in soils. Biochar is also regarded as a carbon storage by fixation of organic carbon. Phosphorus (P) and nitrogen (N) are strictly controlled in many wastewater treatment plants because it causes eutrophication in water bodies. P and N is removed by biological and chemical methods in wastewater treatment plants and transferred to sludge for disposal. On the other hand, P is an irreplaceable essential element for all living organisms and its resource (phosphate rock) is estimated about 100 years of economical mining. Therefore, P and N recovery from waste and wastewater is a critical issue for sustainable human society. For the purpose, intensive researches have been carried out to remove and recover P and N from waste and wastewater. Previous studies have shown that biochars can adsorb and desorbed phosphates implying that biochars could be a complementary fertilizer. However, most of the conventional biochar have limited capacity to adsorb phosphates and nitrate. Recent studies have focused on biochar impregnated with metal salts to improve phosphates and nitrate adsorption by synthesizing biochars with novel structures and surface properties. Metal salts and metal oxides have been used for the surface modification of biochars. If P removal is the only concern, P adsorption kinetics and capacity are the only important factors. If both of P and N removal and the application of recovery are concerned, however, P and N desorption characteristics and bioavailability are also critical factors to be considered. Most of the researches on impregnated biochars have focused on P removal efficiency and kinetics. In this study, coffee waste is thermally treated to produce biochar and it was impregnated with Mg/Al to enhance phosphates and nitrate adsorption/desorption and P bioavailability to increase its value as a fertilizer. Kinetics of phosphates and nitrate adsorption/desorption and bioavailability analysis were carried out to estimate its potential as a P and N removal adsorbent in wasewater and a fertilizer in soil.

  • PDF

A Study on the Mill Scale Pretreatment and Magnetite Production for Phosphate Adsorption (인 흡착을 위한 Mill Scale 전처리 및 Magnetite 제조 연구)

  • Chun, Hyuncheol;Choi, Younggyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.4
    • /
    • pp.246-252
    • /
    • 2015
  • In steel factory, hot roller cleaning process produces a lot of iron oxide particles called as mill scale. Major components of these particles are wustite (FeO), magnetite ($Fe_3O_4$), and hematite ($Fe_2O_3$). In this study, we tried to produce pure magnetite from the mill scale because of the largest phosphate adsorption capacity of the magnetite. The mill scale was treated with acid (HCl+$H_2O_2$), base (NaOH), and acid-base ($H_2SO_4$+NaOH). Batch adsorption tests showed the acid and/or base treatment could increase the phosphate adsorption capacity of the iron oxides from 0.28 to over 3.11 mgP/g. Magnetite, which could be obtained by acid and base treatment of the mill scale, showed the best adsorption capacity. From the kinetic analysis, both Freundlich and Langmuir isotherm well described the phosphate adsorption behavior of the magnetite. In Langmuir model, maximum phosphate adsorption capacity was found to be 5.1 mgP/g at $20^{\circ}C$.

A Study on the Characteristics of Manufactured Photocatalyst Using maleinized Acrylated Epoxidized Soybean Oil for the Dye-sensitized Solar Cell (염료감응 태양전지를 위한 Maleinized Acrylated Epoxidized Soybean Oil를 이용하여 제조된 광촉매의 특성에 관한 연구)

  • Park, Ki-Min;Kim, Tae-Young;Kim, Jeong-Guk;Cho, Sung-Yong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.381-386
    • /
    • 2011
  • Chemically functionalized plant oils, namely maleinized acrylated epoxidized soybean oil(MAESO), were used as a new bio based binders for photoelectrodes of dye-sensitized solar cells. The photocatalysts were characterized by field emission scanning electron microscope(FE-SEM), energy dispersive X-ray spectrometer(EDS), X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and nitrogen adsorption analyses. The surface area and number of appropriate pores were increased in the $TiO_{2}$ particles prepared using the plant oil binders in comparison with the P-25 photocatalyst, due to the larger number of functionalities. The functional groups of OH on the surface of the $TiO_{2}$ particles increased from 9.9% to 16.62%.

Effect of Oxidation-reduction Pretreatment for the Hydrogenation of Caster Oil over Ni/SiO2 Catalyst (산화-환원 전처리에 따른 Ni/SiO2 촉매의 캐스터오일 수소화)

  • Choi, Yi Sun;Kim, Soo Young;Koh, Hyoung Lim
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.326-331
    • /
    • 2017
  • Castor oil can be used as a useful raw material for chemical industries such as intermediates of surfactants through hydrogenation reaction. In this study, effects of the preparation method and pretreatment condition on the nickel catalyst for the hydrogenation of castor oil were investigated. The nickel catalyst was supported on the silica carrier by the precipitation method with different Ni contents, solution pH values, and precipitants. Repeated pretreatments of oxidation and reduction cycles were then carried out. The activity of the nickel catalyst was measured by comparing the iodine value of the castor oil. The dispersion of nickel on the catalyst was analyzed by X-ray diffraction (XRD), $N_2$ adsorption-desorption, and transmission electron microscopy (TEM). The activity of nickel catalyst was also compared by CO oxidation experiments. The redispersion of nickel occurred on the silica by repeated oxidation and reduction cycles, and this effect contributed to promoting the castor oil hydrogenation activity.