• Title/Summary/Keyword: oil additives

Search Result 239, Processing Time 0.014 seconds

Sensory and textural characteristics of mungbean starch gels with soy bean oil and sucrose fatty acid ester during room temperature storage (대두유와 슈크로오스 지방산 에스테르 첨가 녹두전분 겔의 상온 저장시의 관능적, 텍스쳐 특성)

  • 최은정;오명숙
    • Journal of the Korean Home Economics Association
    • /
    • v.42 no.2
    • /
    • pp.213-227
    • /
    • 2004
  • This study was attempted to investigate the sensory and textural characteristics of mungbean starch gels with soy bean oil and sucrose fatty acid ester(SE) addition during room temperature storage. Freshly prepared mungbean starch gels, with and without soy bean oil and SE, were stored at 25$^{\circ}C$ for 24, 48 and 72 hours. The color value, syneresis, texture and sensory properties of the gels were measured. The lightness(L) of the gels with soy bean oil and without additives was similar whereas that with SE was lower than that without additives. Syneresis of the gels with soy bean oil and SE was lower than that without additives. Rupture stress, rupture strain and rupture energy of the freshly prepared gel with 2∼4% soy bean oil were increased, but there were no differences in rupture properties between the gel with soy bean oil and that without additives. Rupture stress, rupture stain and rupture energy of all the gels with SE were decreased. Addition of soy bean oil to the gel did not change the texture profile of the gel, whereas hardness, springiness and chewiness of the gel with SE were decreased. In sensory evaluation, the acceptability of freshly prepared gel with soy bean oil was similar to that without additives, whereas that of the gel with 2% soy bean oil stored for 24 hours was higher than that without additives. The acceptability of the gel with SE was decreased significantly.

Effects of Tribological Characteristics on Lubricants Properties (The 2nd) (윤활유 성질이 마모특성에 미치는 영향(제2보))

  • 오성모;이봉구
    • Tribology and Lubricants
    • /
    • v.17 no.4
    • /
    • pp.335-340
    • /
    • 2001
  • It was reviewed that the kinds of lubricating oil, viscosity, temperature and strength of materials affected the wear of the surface heat treatment. When lubricants is used under severe running conditions, their tribological characteristics are very important. We have studied the lubricating oil viscosity, kinds of additives and their amounts, and lubricating oil temperatures were changed. In order to study the effect of oil temperature on the wear of the surface, the temperature of the oil was changed for the same sample. It was shown from the test results that wear is not greatly affected by the amount of ZnDTP (Zinc dialkyl dithio phosphate) antiwear agent, but EP (Extreme pressure) additives are less effective against wear than ZnDTP additives. The viscosity of lubricating oil and its temperature greatly affect the wear of the surface. Combining all the wear data with those of the surface strength, it was observed that the higher the load, the lower the scratch of wear, and also in the case of the same running load, the lower the wear, the longer the life of the surface strength.

A Study on the Tribological Characteristics of Automobile Gear Oil with Addition of Compound Additives (자동차 기어오일의 혼합첨가제 첨가에 따른 트라이볼로지 특성에 관한 연구)

  • Choi, Nag-Jung;Youn, Suk-Bum
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.557-562
    • /
    • 2008
  • In this paper, experiments have been performed for the investigation of tribological characteristics of automobile gear oil with the addition of ZDDP and DEP by using the FALEX WEAR TEST MACHINE. The results are as follows. The wear characteristics of gear oil was improved by adding compound additives. The extreme pressure of gear oil increases and then decreases with the applied load. The maximum extreme pressure of gear oil with compound additive is bigger then that of pure gear oil. The friction coefficient of pure gear oil monotonically increases with the temperature, but that of gear oil mixed with the additives decreases at the high temperature.

Synthesis of Poly(glycerol-succinic acid)-dithiocarbamate and Poly(glycerol-succinic acid)-1,3,4-thiadiazole Dendrimers and Their Use as Anti-Wear Oil Additives

  • Kim, Yeong-Joon;Hoang, Quoc-Viet;Kim, Sung-Ki;Cho, Chang-Yong;Kim, Jeongkwon;Chung, Keun-Woo;Kim, Young-Wun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2044-2050
    • /
    • 2013
  • A series of poly(glycerol-succinic acid) dithiocarbamate and 1,3,4-thiadiazole dendrimers, which have potential as anti-wear oil additives, were synthesized. Their anti-wear properties in three different oils (100N, DB-51, and soybean) were evaluated using a four-ball wear tester. The results indicated that thiocarbamate dendrimers have moderate anti-wear properties in DB-51 oil, and 1,3,4-thiadiazole dendrimers exhibited good anti-wear properties in 100N and DB-51 oils. However, dithiocarbamate and 1,3,4-thiadiazole dendrimers were not effective anti-wear additives in soybean oil.

The antiwear performance of several organic phosphates from the aspect of interaction between polyolester base oil and additive (Polyolester base oils과의 상호작용에 의한 Organic Phosphates계 내하중첨가제의 마모방지 성능)

  • ;Masabumi Masuko
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.189-194
    • /
    • 1999
  • The antiwear performance of several organic phosphates ,such as tricrecylphosphate(TCP), tributylphosphate(TBP), diphenylhydrogenphosphate(DPHP) ,dissolved in polyol ester based oils is studied. These organic phosphates are well known for antiwear additive for lubricating oil that produce reacted surface protective film. These antiwear additives can drastically reduce wear with their concentration increasing, because the amount of additive adsorbed on metal sur(ace increases. But in the higher concentration region, the wear is increased by excessive and corrosive reaction of the metal surface with these additives. That is to say, there is an optimum concentration for minimum wear. The optimum concentration was different with the kinds of base oils and additives. Different polyolesters showed different optimum concentrations of the additive. The order of optimum concentration among the polyolesters was different with different phosphates. The order of the optimum concentration is shown that the effect of the concentration of additives on the antiwear performance. It can be explained by the interaction between additives and base oils using the solubility parameter.

  • PDF

The Effect of Tribological Characteristics on Lubricants Properties(The 1st) (윤활유의 성질이 마모특성에 미치는 영향(제1보))

  • 오성모;이봉구
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.86-92
    • /
    • 1997
  • When Lubricants is used under severe running condition, tribological characteristics is very important. I have studied the lubricating oil viscosity, kinds of additives and lubricating oil temperatures were changed. In order to study the effect of oil temperature on the wear of the surface, the temperature of the oil was changed for the same sample. Moreover, the temperatures of three kinds of oils which have very different viscosities at room temperature, were varied while the oil viscosity was unchanged. It was shown from the test results that wear is not greatly affected by the amount of ZnDTP antiwear agent, but E-P additives are less effective against wear than ZnDTP additives. The viscosity of lubricating oil and its tempea-ature greatly affect the wear of the surface. Combining all the wear data with those of the surface strength, it was observed that the higher the load, the lower the scratch of wear, and also in the case of the same running load, the lower the wear, the longer the life of the surface strength.

  • PDF

Verification of Conventional kimchi Preservation Methods (김치의 재래보존법 검증)

  • 허은영;이명희;노홍균
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.5
    • /
    • pp.807-813
    • /
    • 1997
  • Various additives(glucono-$\delta$-lactone, glycine, chitosan, Chinese pepper extract+msutard oil, cinnamon oil+ginger oil+mustard oil, Chinese pepper extract), used in the Korean patents singularly or in combination, were tested for extension of shelf-life of kimchi. Addition of glucono-$\delta$-lactone or chitosan was somewhat effective in delaying the fermentation rate, however no such effect was seen by other additives. Chitosan at the concentrations of 0.5, 1.0, and 1.5% was similarily effective in delaying the fermen-tation rate. Mustard oil or cinnamon oil tend to delay the fermentation rate by singular addition at the concern tration of 0.5% or 1%. Soaking of the salted and washed Chinese cabbage in 0.5% chitosan solution resulted in delay of the fermentation rate of kimchi.

  • PDF

Effects of Tribological Characteristics on Lubricants Properties (The 1st) (윤활유 성질이 마모특성에 미치는 영향(제1보))

  • 오성모;이봉구
    • Tribology and Lubricants
    • /
    • v.14 no.2
    • /
    • pp.57-62
    • /
    • 1998
  • When lubricants is used under severe running conditions, their tribological characteristics are very important. We have studied the lubricating oil viscosity, kinds of additives and their amounts, and lubricating oil temperatures were changed. In order to study the effect of oil temperature on the wear of the surface, the temperature of the oil was changed for the same sample. Moreover, the temperatures of three kinds of oils which have very different viscosities at room temperature, were varied between 6$0^{\circ}C$ and 115$^{\circ}C$ while the oil viscosity was unchanged. It was shown from the test results that surface wear is not greatly affected by the amount of ZnDTP (Zinc dialkyl dithio phosphate) antiwear agent, but EP (Extreme pressure) additives are less effective against wear than ZnDTP additives. The viscosity of lubricating oil and its temperature greatly affect the wear of the surface. Combining all the wear data with those of the surface strength, it was observed that the higher the load, the wider the scratching of wear, and also in the case of the same running load, the lower the wear, the longer the life of the surface strength.

A study on effect of additives upon A.C. partial discharge in insulating oil (절연유의 교류부분방전에 미치는 첨가물의 영향에 관한 연구)

  • 국상훈
    • 전기의세계
    • /
    • v.29 no.8
    • /
    • pp.532-537
    • /
    • 1980
  • Effect of Argon and Sulfur hexafloride in the transformer oil are experimented under non-uniform A.C. electric field. The result has shown that the corona frequency and corona charge quantity in liquid dielectrics were varied with gas condition in the oil and affected by the additives. SF$_{6}$ that has the effects of pressure and electrical negative characteristic is the most effective. The corona is considered to be the breakdown of bubble produced by gas contained in the oil or by dissociated ion of the oil molecules.s.

  • PDF

Investigations on Eco Friendly Insulating Fluids from Rapeseed and Pongamia Pinnata Oils for Power Transformer Applications

  • Thanigaiselvan, R.;Raja, T. Sree Renga;Karthik, R.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2348-2355
    • /
    • 2015
  • Transformer mineral oil which is normally hydrocarbon based is non- biodegradable and pollutes the environment in all aspects. Though vegetable oils are eco-friendly in nature and potentially could be used in transformers as a replacement for the mineral oil, there usage is restricted because of their oxidative instability. The present work focuses on using rapeseed oil and pongamia (pongamia pinnata) oil as effective alternatives for the traditional mineral oil in power transformer. The oxidative stability of the rapeseed oil and pongamia oil is increased by using combinations of the natural and synthetic anti-oxidants as additives. The parameters like breakdown voltage, viscosity, flash point, fire point are measured for the rapeseed oil and pongamia oil with and without the additives as per IEC and ASTM standards. The results shown encouraging changes in the parameter values and ensures the use of the oils as a potential alternative insulation in power transformers.