• 제목/요약/키워드: oil & gas pipeline

검색결과 91건 처리시간 0.023초

Optimisation of pipeline route in the presence of obstacles based on a least cost path algorithm and laplacian smoothing

  • Kang, Ju Young;Lee, Byung Suk
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권5호
    • /
    • pp.492-498
    • /
    • 2017
  • Subsea pipeline route design is a crucial task for the offshore oil and gas industry, and the route selected can significantly affect the success or failure of an offshore project. Thus, it is essential to design pipeline routes to be eco-friendly, economical and safe. Obstacle avoidance is one of the main problems that affect pipeline route selection. In this study, we propose a technique for designing an automatic obstacle avoidance. The Laplacian smoothing algorithm was used to make automatically generated pipeline routes fairer. The algorithms were fast and the method was shown to be effective and easy to use in a simple set of case studies.

지하철과 전력선의 누설전류 측정을 위한 저장형 데이터 계측장치 (DATA LOGGER APPARATUS FOR MEASUREMENT STRAY CURRENT OF SUBWAY AND POWER LINE)

  • 배정효;하윤철;하태현;이현구;김대경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.731-734
    • /
    • 2003
  • In present, most of metallic structures(gas pipeline, oil pipeline, water pipeline, etc) are running parallel with subway and power line in seoul. Moreover subway system and power line make a stray current due to electrical corrosion on metallic structures. The owner of metallic structures has a burden of responsibility for the protection of corrosion and the prevention against big accident such as gas explosion or soil pollution and so on. So, they have to measure and analyze the data about P/S(Pipe to Soil) potential, amplitude of stray current, point of source of stray current and so. In this paper, results of development about data logger apparatus for measurement stray current of subway and power line are presented.

  • PDF

Numerical and Experimental Studies of Dual Subsea Pipelines in Trench

  • Jo, Chul H.;Shin, Young S.;Min, Kyoung H.
    • Journal of Ship and Ocean Technology
    • /
    • 제6권2호
    • /
    • pp.12-22
    • /
    • 2002
  • Offshore pipelines play an important role in the transportation of gas, oil, water and oil products. It is common to have a group of pipelines in the oil and gas field. To reduce the installation cost and time, dual pipelines are designed. There are great advantages in the installation of dual pipelines over two separate single lines. It can greatly reduce the cost for trench, back-filling and installation. However the installation of dual pipelines often requires technical challenges. Pipelines should be placed to be stable against external loadings during installation and design life period. Dual pipelines in trench can reduce the influence of external forces. To investigate the flow patterns and forces as trench depth and slope changes, number of experiments are conducted with PIV(Particle Image Velocimetry) equipment in a Circulating Water Channel. Numerical approaches to simulate experimental conditions are also made to compare with experimental results. The velocity fields around dual pipelines in trench are investigated and analysed. Comparison of both results show similar patterns of flow around pipelines. It is proved that the trench depth contributes significantly on hydrodynamic stability. The trench slope also affects the pipeline stability. The results can be applied in the stability design of dual pipelines in trench section. The complex flow patterns can be effectively linked in the understanding of fluid motions around multi-circular bodies in trench.

Seismic Influence on Subsea Pipeline Stresses

  • Choi, Byoung-Yeol;Lee, Sang-Gil;Kim, Jin-Kwang;Oh, Jin-Soo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제3권1호
    • /
    • pp.1-14
    • /
    • 2017
  • The safety analysis of an earthquake is carried out during the operation of a subsea pipeline and an onshore pipeline. Several cases are proposed for consideration. In the case of a buried pipeline, permanent ground deformation by the earthquake and an increase of internal pressure by the acceleration of the earthquake should be considered. In the case of a subsea pipeline, a bending moment is caused by liquefaction of the backfill material on a trenched seabed, etc., which results in a high bending moment of the buried pipeline. The bending moment causes the collapse of the subsea pipeline or a leak of crude oil or gas, which results in economic loss due to enormous environmental contamination and social economic loss owing to operation functional failure. Thus, in order to prevent economic loss and operation loss, structurally sensitive design with regard to seismic characteristics must be performed in the buried pipeline in advance, and the negative impact on the buried pipeline must be minimized by conducting a thorough analysis on the seabed and backfilling material selection. Moreover, it is proposed to consider the selection of material properties for the buried pipeline. A more economical review is also required for detailed study.

Tavan Tolgoi Coal Bed Methane에 대한 몽골에서의 타당성 조사 (Pre-feasibility Study in Mongolia Tavan Tolgoi Coal Bed Methane)

  • 조원준;유혜진;이제설;이현찬;주우성;임옥택
    • 한국수소및신에너지학회논문집
    • /
    • 제29권1호
    • /
    • pp.124-129
    • /
    • 2018
  • Methane is the cleanest fuel and supplies by many distributed type: liquefaction natural gas (LNG), compressed natural gas (CNG), and pipeline natural gas (PNG). Natural gas is mainly composed by methane and has been discovered in the oil and gas fields. Coal bed methane (CBM) is also one of them which reserved in coalbed. This significant new energy sources has emerge to convert an energy source, hydrogen and hydrogen-driven chemicals. For this CBM, this paper was written to analyze the geological analysis and reserves in Mongolian Tavan Tolgoi CBM coal mine and to examine the application field. This paper is mainly a preliminary feasibility report analyzing the business of Tavan Tolgoi CBM and its exploitable gas.

An Overview of New Progresses in Understanding Pipeline Corrosion

  • Tan, M. YJ;Varela, F.;Huo, Y.;Gupta, R.;Abreu, D.;Mahdavi, F.;Hinton, B.;Forsyth, M.
    • Corrosion Science and Technology
    • /
    • 제15권6호
    • /
    • pp.271-280
    • /
    • 2016
  • An approach to achieving the ambitious goal of cost effectively extending the safe operation life of energy pipeline to 100 years is the application of health monitoring and life prediction tools that are able to provide both long-term remnant pipeline life prediction and in-situ pipeline condition monitoring. A critical step is the enhancement of technological capabilities that are required for understanding and quantifying the effects of key factors influencing buried steel pipeline corrosion and environmentally assisted materials degradation, and the development of condition monitoring technologies that are able to provide in-situ monitoring and site-specific warning of pipeline damage. This paper provides an overview of our current research aimed at developing new sensors and electrochemical cells for monitoring, categorising and quantifying the level and nature of external pipeline and coating damages under the combined effects of various inter-related variables and processes such as localised corrosion, coating cracking and disbondment, cathodic shielding, transit loss of cathodic protection.

해저면에 설치된 2차원 복합해저관로 주위의 유동특성에 관한 실험적 연구 (A Study of Flow Pattern around the Two-Dimensional Dual Subsea Pipeline on Sea Bottom)

  • 나인삼;조철희;정우철;김두홍
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 추계학술대회 논문집
    • /
    • pp.122-127
    • /
    • 2001
  • As pipelines are often used to transport gas, oil, water and oil products, there are more than one pipeline installed in the offshore field. The size and space of pipelines are various depending on the design specifications. The pipelines are to be designed and installed to secure the stability to external loads during the installation and operation period. The flow patterns are very complex around the pipelines being dependent on incoming flow velocity, pipelines size and space. To investigate the flow patterns, number of experiment are conducted with visualization equipment in a circulating water channel. The flow motion and trajectory were recorded from the laser reflected particles by camera. From the experiment the flow patterns around spaced pipelines were obtained. Also pressure gradient was measured by mano-meter to estimate the hydrodynamic forces on the behind pipeline. The results show that the various sizes and spaces can be affected in the estimation of external load. The complex flow patterns and pressure gradients can be effectively used in the understanding of flow motion and pressure gradient.

  • PDF

Expansion Spool Design of an Offshore Pipeline by the Slope Deflection Method

  • Choi, Han-Suk;Do, Chang-Ho;Na, Young-Jang
    • 한국해양공학회지
    • /
    • 제24권5호
    • /
    • pp.1-7
    • /
    • 2010
  • Offshore, sub-sea pipelines that transport oil and gas experience thermal expansion induced by the temperature of the transported medium during operation. The expansion of the pipeline can induce overload and cause damage to offshore platforms or sub-sea structures that are connected to the pipelines. To mitigate and prevent these incidents, expansion spools are installed between offshore, sub-sea pipelines and risers on the platform. This paper presents the results of the study and development of a simplified design method for expansion spools, using the slope deflection method for the purpose of preliminary design or front-end engineering and design (FEED).

Reliability sensitivity analysis of dropped object on submarine pipelines

  • Edmollaii, Sina Taghizadeh;Edalat, Pedram;Dyanati, Mojtaba
    • Ocean Systems Engineering
    • /
    • 제9권2호
    • /
    • pp.135-155
    • /
    • 2019
  • One of the safest and the most economical methods to transfer oil and gas is pipeline system. Prediction and prevention of pipeline failures during its assessed lifecycle has considerable importance. The dropped object is one of the accidental scenarios in the failure of the submarine pipelines. In this paper, using Monte Carlo Sampling, the probability of damage to a submarine pipeline due to a box-shaped dropped object has been calculated in terms of dropped object impact frequency and energy transfer according to the DNV-RP-F107. Finally, Reliability sensitivity analysis considering random variables is carried out to determine the effect intensity of each parameter on damage probability. It is concluded that impact area and drag coefficient have the highest sensitivity and mass and add mass coefficient have the lowest sensitivity on probability of failure.

Burst strength behaviour of an aging subsea gas pipeline elbow in different external and internal corrosion-damaged positions

  • Lee, Geon Ho;Pouraria, Hassan;Seo, Jung Kwan;Paik, Jeom Kee
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권3호
    • /
    • pp.435-451
    • /
    • 2015
  • Evaluation of the performance of aging structures is essential in the oil and gas industry, where the inaccurate prediction of structural performance can have significantly hazardous consequences. The effects of structure failure due to the significant reduction in wall thickness, which determines the burst strength, make it very complicated for pipeline operators to maintain pipeline serviceability. In other words, the serviceability of gas pipelines and elbows needs to be predicted and assessed to ensure that the burst or collapse strength capacities of the structures remain less than the maximum allowable operation pressure. In this study, several positions of the corrosion in a subsea elbow made of API X42 steel were evaluated using both design formulas and numerical analysis. The most hazardous corrosion position of the aging elbow was then determined to assess its serviceability. The results of this study are applicable to the operational and elbow serviceability needs of subsea pipelines and can help predict more accurate replacement or repair times.