• 제목/요약/키워드: oikos

검색결과 29건 처리시간 0.022초

토양 정화 방법에 따른 토양의 물리화학적 특성 변화 (Changes in the Physicochemical Properties of Soil According to Soil Remediation Methods)

  • 이용민;오참뜻;김국진;이철효;성기준
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제17권4호
    • /
    • pp.36-43
    • /
    • 2012
  • Various methods are used to remediate soil contaminated with heavy metals or petroleum. In recent years, harsh physical and chemical remediation methods are being used to increase remediation efficiency, however, such processes could affect soil properties and degrade the ecological functions of the soil. Effects of soil washing, thermal desorption, and land farming, which are the most frequently used remediation methods, on the physicochemical properties of remediated soil were investigated in this study. For soils smaller than 2 mm, the soil texture were changed from sandy clay loam to sandy loam because of the decrease in the clay content after soil washing, and from loamy sand to sandy loam because of the decrease in the sand content and increase in silt content during thermal desorption, however, the soil texture remained unchanged after land farming process. The water-holding capacity, organic matter content, and total nitrogen concentration of the tested soil decreased after soil washing. A change in soil color and an increase in the available phosphate concentration were observed after thermal desorption. Exchangeable cations, total nitrogen, and available phosphate concentration were found to decrease after land farming; these components were probably used by microorganisms during as well as after the land farming process because microbial processes remain active even after land farming. A study of these changes can provide information useful for the reuse of remediated soil. However, it is insufficient to assess only soil physicochemical properties from the viewpoint of the reuse of remediated soil. Potential risks and ecological functions of remediated soil should also be considered to realize sustainable soil use.

정화토양 및 배출가스의 환경적 특성 분석을 통한 저온열탈착장치의 현장 적용성 평가 (Field Applicability of Low Temperature Thermal Desorption Equipment through Environmental Impact Analysis of Remediated Soil and Exhaust Gas)

  • 오참뜻;이용민;김용성;전우진;박광진;김치경;성기준;장윤영;김국진
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제17권3호
    • /
    • pp.76-85
    • /
    • 2012
  • Geochemical and ecological properties of remediated soil and gas exhausted from a low-temperature thermal desorption (LTTD) process were analyzed to assess the environmental impact of LTTD treatment. Soil characteristics were examined with regard to the chemical (EC, CEC, and organic matter) and the ecological (dehydrogenase activity, germination rate of Brassica juncea, and growth of Eisenia andrei) properties. The exhaust gases were analyzed based on the Air Quality Act in Korea as well as volatile organic compounds (VOCs) and mixed odor. Level of organic Organic matter of the soil treated by LTTD process was slightly decreased compared to that of the original soil because the heating temperature ($200^{\circ}C$) and retention time (less than 15 minutes) were neither high nor long enough for the oxidation of organic matter. The LTTD process results in reducing TPH of the contaminated soil from $5,133{\pm}508$ mg/kg to $272{\pm}107$ mg/kg while preserving soil properties. Analysis results of the exhaust gases from the LTTD process satisfied discharge standard of Air Quality Law in Korea. Concentration of VOCs including acetaldehyde, propionaldehyde, butyraldehyde and valeraldehyde in circulation gas volatilized from contaminated soil were effectively reduced in the regenerative thermal oxidizer and all satisfied the legal standards. Showing ecologically improved properties of contaminated soil after LTTD process and environmentally tolerable impact of the exhaust gas, LTTD treatment of TPH-contaminated soil is an environmentally acceptable technology.

Modeling As(III) and As(V) adsorption and transport from water by a sand coated with iron-oxide colloids

  • Ko, Il-Won;Lee, Cheol-Hyo;Kim, Kyoung-Woong
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.243-247
    • /
    • 2004
  • Tile development of a porous iron-oxide coated sand filter system can be modelled with the analytical solution of tile transport equation in order to obtain the operating parameters and investigate the mechanism of arsenic removal. The adsorbed amount from the model simulation showed the limitation of adsorption removal during arsenic transport. A loss reaction term in the transport equation plays a role in the mass loss in column conditions, and then resulted into the better model fitting, particularly, for arsenate. Further, the competitive oxyanions delayed the breakthrough near MCL (10 $\mu$g/L) due to the competitive adsorption. This is the reason why arsenate can be strongly attracted in tile interface of an iron-oxide coated sand, and competing oxyanions can occupy the adsorption sites. Therefore, arsenic retention was regulated by non-equilibrium of arsenic adsorption in a porous iron-oxide coated sand media. The transport-limited process seemed to be affect the arsenic adsorption by coated sand.

  • PDF

정수처리에서 pH 저감에 의한 응집효율향상에 관한 연구 (Improving Coagulation Performance with pH Preadjustment in Drinking Water Treatment)

  • 이환;이철효;정창규;이윤진
    • 한국환경보건학회지
    • /
    • 제29권2호
    • /
    • pp.1-6
    • /
    • 2003
  • This paper reports on a pilot scale comparison of PACS coagulation with and without pH preadjustment. The pH of the water was adjusted with carbon dioxide and sulfuric acid. Process performance was assessed on the basis of total organic carbon(TOC), UV absorbance, turbidity and disinfection by-product(DBP) precursors. Coagulation pH appeared to be a determining factor for maximum NOM removal. The optimum coagulation pH in order to decrease TOC and turbidity were pH 7. Preadjustment of pH 7 increased TOC removal to as much as 43, 47 percent with sulfuric acid and carbon dioxide. Moreover, coagulation at pH 7 caused a reduction in UV$_{254}$, THMFP and HAAFP compared to the baseline coagulation. For preadjustment of pH 7 with carbon dioxide, the percentage of TOC, UV$_{254}$, THMFP and HAAFP shows the reduction rate of 3.8, 0.5, 4.8, 9.4% comparing to the coagulation rendition using sulfuric acid. Acid addition to depress pH during coagulation decrease Langelier Saturation Index(LSI), potentially causing increase corrosion in water distribution systems. LSI for carbon dioxide and sulfuric acid at pH 6 was -2.3, -3.3. Therefore, carbon dioxide was more effective at controlling corrosion than sulfuric acid.

토양세척에 의한 비소 및 중금속 오염토양의 복원 (Remediation of Soils Contaminated with Arsenic and heavy Metals by Soil Washing)

  • 고일원;이철효;이광표;김경웅
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제9권4호
    • /
    • pp.52-61
    • /
    • 2004
  • 음이온 비소와 양이온 아연 및 니켈로 오염된 토양을 산세척으로 복원하기 위해서 토양세척 파일럿 장비를 이용해서 토양의 물성과 산세척 특성 및 미세토양과 용존 오염물의 발생 특성을 고찰하였다. 비소와 아연 및 니켈의 pH $2{\sim}3$에서 산세척시 황산과 인산은 공존 경쟁 음이온의 존재로 비소의 제거 효율을 높였고, 염산은 비소, 니켈, 아연을 동시에 효율적으로 제거하였다. 세척조에서 화학적 용출은 임계체류시간 이상에서 세척 효율이 일정해졌고, 산에 의한 용출 가능한 존재형태는 교환성 및 산화물 결합과 유기성 결합형태, 그리고 부분적으로 잔류형태였다. 오염 토양의 입도에 따른 과립의 토양입자의 토양세척 효율은 높지만, 미세입자($<74{\mu}m$)는 오염물질의 농집 현상이 일어나서 제거효율이 감소했다. 또한, $<149{\mu}m$ 이하의 미세토양을 물리적 입도 분리시 전체 세척효율이 향상되었다. 따라서, 미세토양의 양이 최소가 되고 화학적 용출이 최대가 되는 세척 효율 교차지점에서 화학적 용출과 미세토양의 분리가 토양세척의 증가된 효율을 보여 주었다.

생장 온도 범위별 최적의 유류분해 미생물을 이용한 토양경작 정화기술의 효율성 제고에 관한 현장 적용성 연구 (A Field Study on the Enhancement of Landfarming Performance Using Oil-degradable Microbes Adapted to Various Temperature Range)

  • 유재봉;김정호;김국진;오승택;이철효;박이경;장윤영
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제14권5호
    • /
    • pp.10-17
    • /
    • 2009
  • 생물학적 정화는 TPH로 오염된 지역을 정화하는 효과적인 방법으로 적용되고 있다. 하지만 미생물의 분해 활성이 적정온도 이하, 이상의 온도에서는 감소하기 때문에, 생분해 효율이 온도의 변화에 많은 영향을 받는 것으로 알려져 있다. 따라서 이번 연구의 목적은 유류 분해 효율이 우수한 중저온성 미생물을 분리하여 TPH로 오염된 지역에 적용할 때의 정화효율을 평가해 보는 것이다. 먼저 탄화수소 분해효율이 뛰어난 중온성($30^{\circ}C$)미생물 5종과 저온성($80^{\circ}C$) 미생물 3종의 consortia를 분리하였으며, 이들 미생물 consortia를 실험실내에서 유류로 오염된 토양에 적용해 본 결과, 중온성 미생물의 경우 초기 TPH 4,044 mg/kg이 10일 경과 후 1,084 mg/kg으로 73.2%, 저온성 미생물은 TPH 5,427 mg/kg이 50일 경과 후 1,756 mg/kg으로 67.6%의 처리효율을 보였다. 이 분해율은 휘발이나 희석에 의한 물리적 저감을 포함한다. 이후 분리된 미생물들을 토양 경작 현장에 적용해 본 결과, TPH 2,560 mg/kg의 오염이 56일 경과 후 87.1%의 제거율을 보였으며, 이때의 생분해 반응 속도상수는 $0.0374\;day^{-1}$이었다. 본 연구 결과는 저온, 중온 상태에서 미생물을 이용한 생물학적 정화가 더 다양하게 이용될 수 있는 가능성을 보여준 것으로 판단된다.

정수소독공정에 이용되는 염소, 이산화염소, 오존 소독제의 비교, 고찰에 관한 연구 (Comparison of Chlorine, Chlorine Dioxide and Ozone as Disinfectants in Drinking Water)

  • 이윤진;이선종;이동찬;김현;이환;이철효;남상호
    • 한국환경보건학회지
    • /
    • 제28권3호
    • /
    • pp.1-8
    • /
    • 2002
  • The experiments for the characterization of inactivation were performed in a series of batch processes with the total coliform as a general indicator organism based on chlorine, chlorine dioxide and ozone as disinfectants. The water sam-ples were taken from the outlet of settling basin in a conventional surface water treatment system that is provided with the raw water drawn from the mid-stream of the Han River. The inactivation of total coliform was experimentally ana-lyzed for the dose of disinfectant contact time, pH, Temperature and DOC. The nearly 2.4,3.0,3.9 log inactivation of total coliform killed by injecting 1 mか1 at 5 minutes for chlorine, chlorine dioxide and ozone. For the inactivation of 99.9%(3 log), Disinfectants required were 1.70, 1.00 and 0.60 mか1 for chlorine, chlorine dioxide and ozone, respec-tively. The higher the pH is, the poorer the disinfections effects are in the range of pH 6-9 by using chlorine and ozone. But the irfluence of pH value on killing effects of chlorine dioxide is weak. The parameters estimated by the models of Chick-Watson, Hom, and Selleck from our experimental data obtained for chlorine are: log(N/ $N_{0}$ )=-0.16 CT with n= 1, log(N/ $N_{0}$ )=-0.71 $C^{0.87}$T with n$\neq$1, for Chicks-Watson model, log (N/ $N_{0}$ )= -1.87 $C^{0.47}$ $T^{0.36}$ for Hom model. For chlorine dioxide are: log(N/ $N_{0}$ )= -1.53 CT with n = 1, log(N/ $N_{0}$ )= -2.29 $C^{0.94}$T with n$\neq$1,, for Chicks-Watson model, log(N/ $N_{0}$ )= -3.64 $C^{0.43}$ $T^{0.24}$ for Hom model and for ozone are: log(N/ $N_{0}$ )= -2.59 CT with n = 1, log(N/ $N_{0}$ )= -2.28 $C^{0.36}$T with n$\neq$1, for Chicks-Watson model, log(N/ $N_{0}$ )= -4.53 $C^{0.26}$ $T^{0.19}$ for Hom model.19/ for Hom model.

토양지하수 미세환경과 오염정화효율과의 상관성 고찰 (Effect of Soil Micro-environments on the Remediation Efficiency of Contaminated Soil and Groundwater: Review and Case Study)

  • 심무준;양중석;이미정;이기현;박재선;김국진;민상윤;김주영;최민주;김민찬;임종환;권만재
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제19권1호
    • /
    • pp.34-45
    • /
    • 2014
  • 산업화의 영향으로 발생한 토양 지하수 내 중금속 및 유류 오염정화를 위해 다양한 시도가 이루어지고 있다. 그러나 미세토양이 상대적으로 많이 포함되어 있는 오염토양 정화시 오염물질의 rebound나 tailing 현상이 발생되어 정화기간이 장기화 되어왔다. 이러한 문제점은 미세토양과 미세공극이 존재하는 미세환경과 오염물질의 각각의 특성, 존재형태, 그리고 상호간의 다양한 반응 등으로부터 기인한다고 보고되었다. 따라서, 본 연구에서는 토양 지하수 미세환경과 오염정화 효율성과의 상관성에 대해 고찰하고 미세환경의 샘플링, 분석, 평가 기법을 소개 및 제안하며, 이를 활용한 오염정화효율 향상과 최적의 정화공법선정을 위한 정보를 제공하고자 하였다. 오염토양의 물리 화학 생물학적 특성 그리고 오염물질 종류 및 특성에 따른 정밀 평가를 통해 특정 정화공법 적용시 달성 가능한 정화기간과 정화수준을 예상할 수 있을 것이다. 따라서, 미세환경의 정밀 분석, 평가 기술을 바탕으로 정화 기술의 효율성과 타당성 검토가 가능할 것으로 판단되며 오염된 토양 지하수 복원을 위한 최적의 정화공법을 선정하는 기초자료로써 활용될 수 있을 것으로 사료된다.

포름알데히드로 오염된 실내공기의 정화에 미치는 식물효과에 관한 연구 (A Study on Plant Effects on Decontamination of Polluted Indoor Air with Formaldehyde)

  • 박소영;김정;장영기;성기준
    • 환경영향평가
    • /
    • 제14권4호
    • /
    • pp.147-155
    • /
    • 2005
  • This study was designed to investigate the effect of plant as a botanical air purification on the indoor pollution by formaldehyde. Three indoor plants such as Dracaena marhginata, Spathiphyllum and Dracaena reflexa, were placed in the artificially contaminated reactor under laboratory condition. Both plant and soil effects on removal of formaldehyde from contaminated indoor air were observed. Reductions in the formaldehyde levels appeared to have been associated with soil medium factors as well as plant factors. The effect of soil on formaldehyde reduction was high in the early stage of the experiment and the results suggest that sorption could be more important factor than microbial degradation in the initial dissipation of contaminants in the soil. It was suggested that the effect of plant on formaldehyde reduction might be related to the plant species, total leaf surface area of plant, degree of contribution of soil medium, and exposed concentration level. The results of this study showed that air purification using plants is an effective means of reduction on indoor formaldehyde level, though, utilization of soil media with high sorption capacity and/or supplementary purifying aids were also suggested when the source is continuous or exposed concentration level is high.

급수관에서 관재에 따른 부식특성과 미생물 재성장 고찰 (Influence of Pipe Materials on Corrosion and Bacteria Regrowth in A Model Home Plumbing System)

  • 김태현;이윤진;이환;이철효;안교철;이우식
    • 한국환경과학회지
    • /
    • 제16권1호
    • /
    • pp.121-128
    • /
    • 2007
  • This study performed in order to evaluate the effects of pipe materials on corrosion and bacteria regrowth using a laboratory scale batch test. Two varieties of feed water with different microbial conditions were selected: tap water, surface river water (Han River water), and five pipe materials; carbon steel, copper, galvanized iron, stainless steel, and PVC, Carbon steel and galvanized iron pipes showed higher corrosion rates than other materials. In terms of attached bacterial growth, pipes with PVC and stainless steel showed higher bacteria concentration compared to other materials. Pseudomonas vesicularis was the predominant bacteria found on biofilm. The behavior of bacterial growth in the pipes was observed using a scanning electron microscope.