• 제목/요약/키워드: offshore subsea structure manifold

검색결과 4건 처리시간 0.018초

낙하체 충돌을 고려한 심해저 매니폴드 보호 구조물 설계 (Design of Subsea Manifold Protective Structure against Dropped Object Impacts)

  • 우선홍;이강수;정준모
    • 한국해양공학회지
    • /
    • 제31권3호
    • /
    • pp.233-240
    • /
    • 2017
  • Subsea structures are always vulnerable to accidental risks induced by fishing gear, dropped objects, etc. This paper presents the design of a subsea manifold protective structure that protects against dropped object impacts. Probable dropped object scenarios were established considering the shapes and masses of the dropped objects. A design layout for the manifold protective structure was proposed, with detailed scantlings and material specifications. A method applicable to the pipelines specified in DNV-RP-F107(DNV, 2010) was applied to calculate the annual probabilities of dropped objects hitting the subsea manifold. Nonlinear finite element analyses provided the structural consequences due to the dropped object impacts such as the maximum deflections of the protective structure and the local fracture occurrences. A user-subroutine to implement the three-dimensional fracture strain surface was used to determine whether local fractures occur. The proposed protective structure was shown to withstand the dropped object impact loads in terms of the maximum deflections, even though local fractures could induce accelerated corrosion.

심해저 원유 생산용 매니폴드 프레임 구조 기본 설계 (Basic Design of Deep Subsea Manifold Frame Structure for Oil Production)

  • 박세용;정준모
    • 한국해양공학회지
    • /
    • 제29권3호
    • /
    • pp.207-216
    • /
    • 2015
  • Amanifold is one of the essential subsea oil and gas production components to simplify the subsea production layout. It collects the production fluid from a couple of wellheads, transfers it to onshore or offshore storage platforms, and even accommodates water and gas injection flowlines. This paper presents the basic design procedure for a manifold frame structure with novel structural verification using in-house unity check codes. Loads and load cases for the design of an SIL 3 class-manifold are established from a survey of relevant industrial codes. The basic design of the manifold frame is developed based on simple load considerations such as the self weights of the manifold frame and pipeline system. In-house software with Eurocode 3 embedded, called INHA-SOLVER, makes it possible to carry out code checks on the yield and buckling unities. This paper finally proves that the new design of the manifold frame structure is effective to resist a permanent and environment load, and the in-house code is also adaptively combined with the commercial finite element code Nastran.

단순화 모델에서의 응답스펙트럼과 시간이력 내진해석 결과를 활용한 해양플랜트용 매니폴드 실제품의 내진강도 평가 (Seismic Access of Offshore Subsea Manifold using RSA and THA Seismic Analysis Results for Simplified Model)

  • 이은호;곽시영
    • 한국전산구조공학회논문집
    • /
    • 제32권1호
    • /
    • pp.7-16
    • /
    • 2019
  • 본 논문에서는 해양플랜트용 매니폴드 구조물의 내진해석을 위해, 단순화 모델에 대해 응답스펙트럽해석(RSA) 및 시간이력해석(THA)을 여러 조건으로 진행하여 비교 검토하였다. 응답스펙트럼해석은 ISO19901-2에 따른 내진설계 절차를 이용하였다. 시간이력해석의 경우, 응답스펙트럼으로 가속도와 변위에 대한 지진이력을 인공적으로 만든뒤 Explicit와 Implicit 솔버를 사용하여 해석하였다. 단자유도 모델을 사용하여 해석방법을 검증하였으며, 매니폴드 구조물을 단순화한 모델에서 시간이력해석과 응답스펙트럼해석법의 차이를 분석하였다. 복잡한 실제 구조물에 대해서 직접적인 시간이력해석은 불가능하므로 응답스펙트럼해석법을 적용하였고, 단순화 모델에서 분석한 결과 차이를 활용하여 실제 구조물의 안전성을 판단하였다.

심해저 원유 생산용 매니폴드 기초 석션 버켓 기본 설계 (Basic Design of Subsea Manifold Suction Bucket)

  • 우선홍;이강수;정준모
    • 대한조선학회논문집
    • /
    • 제55권2호
    • /
    • pp.161-168
    • /
    • 2018
  • This paper presents the design procedure of the suction bucket used to support a subsea manifold. The soil-suction bucket interaction numerical analysis technique was verified by comparing the present results with a reference data. In order to simulate the soil-bucket interaction analyses of a subsea manifold structure, various material data such as undrained shear strength, elastic modulus, and poisson ratio of soft clay in Gulf of Mexico were collected from reference survey. We proposed vertical and horizontal design loads based on system weights and current-induced drag forces. Under the assumption that diameter of the suction bucket was 3.0 m considering real dimension of the subsea manifold frame structures, aspect ratio was decided to be 3.0 based on reference survey. The ultimate bearing load components were determined using tangent intersection method. It was proved that the two design load components were less than ultimate bearing loads.