• 제목/요약/키워드: offshore structures

검색결과 832건 처리시간 0.023초

비선형 회귀 분석을 이용한 부유식 해양 구조물의 중량 추정 모델 연구 (A Study on the Weight Estimation Model of Floating Offshore Structures using the Non-linear Regression Analysis)

  • 서성호;노명일;신현경
    • 대한조선학회논문집
    • /
    • 제51권6호
    • /
    • pp.530-538
    • /
    • 2014
  • The weight estimation of floating offshore structures such as FPSO, TLP, semi-Submersibles, Floating Offshore Wind Turbines etc. in the preliminary design, is one of important measures of both construction cost and basic performance. Through both literature investigation and internet search, the weight data of floating offshore structures such as FPSO and TLP was collected. In this study, the weight estimation model was suggested for FPSO. The weight estimation model using non-linear regression analysis was established by fixing independent variables based on this data and the multiple regression analysis was introduced into the weight estimation model. Its reliability was within 4% of error rate.

소수의 모드형상을 이용한 자켓형 해양구조물의 손상추정에 대한 연구 (Damage Detection in Jacket-Type Offshore Structures From Few Mode Shapes)

  • ;김정태
    • 한국해양공학회지
    • /
    • 제8권1호
    • /
    • pp.144-153
    • /
    • 1994
  • 본 연구에서는, 소수의 모드형상의 진동반응만이 측정된 자켓형 해양구조물에 존재하는 손상의 위치와 그 크기를 결정할 수 있는 알고리듬이 제시된다. 먼저, 모드형상의 변화로 부터 직접 손상위치와 크기를 결정하는 이론이 제시된다. 다음으로, 세개의 진동모드형상이 측정된 자켓형 해양구조물의 수치예를 이용하여 알고리듬의 적합성이 예증된다. 본 연구의 결과는 다음과 같다. 첫째로, 자켓형 해양구조물에 존재하는 손상의 위치가 정확하게 예측 되었다. 둘째로, 예측된 손상의 크기가 비교적 정확하게 예측되었다.

  • PDF

Technical preparedness in Southeast Asia region for onshore dismantling of offshore structures: Gaps and opportunities

  • Jing-Shuo Leow;Jing-Shun Leow;Hooi-Siang Kang;Omar Yaakob;Wonsiri Punurai;Sari Amelia;Huyen Thi Le
    • Ocean Systems Engineering
    • /
    • 제13권1호
    • /
    • pp.79-95
    • /
    • 2023
  • An onshore dismantling yard is an important part in the supply chain of the offshore oil and gas decommissioning industry. However, despite having more than 500 offshore structures to be decommissioned in the Southeast Asia region, there are a very limited number of well-equipped dismantling yards to fully execute the onshore dismantling. Recent investigations discovered that shipbuilding and offshore structure fabrication yards are still potential options for upgrades to include dismantling. Despite the huge potential opportunities from upgrading to dismantling, research studies on this area are relatively scarce, and most past studies mainly focused on the North Sea region. To date, the potential opportunities of Southeast Asia and Malaysia yards to develop onshore dismantling capability are still unclear. The aim of this study is to identify the criteria to develop a technical preparedness checklist to evaluate an onshore dismantling yard; consequently, this will assist with assessing and bridging the gaps and identify the opportunity of developing an onshore dismantling yard in Southeast Asia region. Requirements for onshore dismantling and related rules and regulations have been investigated and summarized in the form of checklist. Findings from this study can help local oil and gas operators to pursue more local solutions and resilient supply chain performance.

해저 석유개발을 위한 해양구조물의 기본 설계/해석 및 실험기법 개발 -해양구조물에 작용하는 파랑하중 산정에 관한 연구 (A Study on the Determination of Wave Load Acting on Offshore Structures)

  • 이근무
    • 한국해양공학회지
    • /
    • 제14권1호
    • /
    • pp.6-10
    • /
    • 2000
  • In this paper various methods of determining of wave loads acting ofshore structures including impact load due to breaking wave are studied and corresponding model test was performed. In the theoretical approach wave load by nonbreaking wave and impact load by breaking wave is determined by Morrison's equation Goda's equation and impact wave equation, In the experimental approach wave load by nonbreaking wave acting on cylindrical pile used in offshore structures is determined by measuring the strain on a cylindrical pile and compared with theoretical calue. in the numerical approach impact load by breaking wave acting on a modeled cylindrical pile is calculated by usign ANSYS FEM program and compared with theoretical value. It is found that the experimental and numerical results are comparable to theoretical results, Thus the determination of wave load acting on offshore structures can be obtained by a proposed methods and it acceptable.

  • PDF

An analytical approach for offshore structures considering soil-structure interaction

  • Ali Sari;Kasim Korkmaz
    • Advances in Computational Design
    • /
    • 제9권1호
    • /
    • pp.25-38
    • /
    • 2024
  • This paper presents an advanced analytical approach for the design and analysis of fixed offshore structures with soil structure interaction considered. The proposed methodology involves conducting case studies to illustrate and assess the structural response of a structure considering seven different earthquakes, with the primary goal of ensuring there is no global collapse in the structures. The case studies focus on developing a model for structural analysis and its topside, incorporating nonlinear axial and lateral springs to capture soil-pile interaction. Additionally, mass and damping ratios are considered through the use of dashpots in the analyses. Finite Element Software was employed for structural analyses with detailed modeling, with soil spring nodes applied in the entire structure across various depths. After the finite element analysis was carried out, a sensitivity analysis was conducted to quantify and report the effects of different parameters.

외해구조물 건설에 따른 해빈 변형에 관한 실험적 연구 (Experimental Study for Beach Process by Construction of Offshore Structure)

  • 이중우
    • 한국해안해양공학회지
    • /
    • 제12권2호
    • /
    • pp.96-106
    • /
    • 2000
  • 최근에까지 대형구조물이 해양공간이용의 목적으로 외해공항 및 해양터미날로 건설되어 왔다 그러나 때로는 이와같은 큰 규모의 구조물은 파량에 대해 현저한 벽으로 작용하게 되고 해안에 심각한 침식현상을 야기하게 된다 본 연구는 해안선으로부터 각기 다른 거리에 외해구조물을 건설할 때에 해저지형변화를 다룬 것으로 일련의 3차원 이동상실험으로 상세히 조사하였다 또한 해빈류와 외해구조물 배후의 국소침식과의 관계를 분명하게 하기 위하여 수리모델실험과 같은 규격으로 Boussinesq방정식 모델로 해빈류를 계산하고 비교하였다.

  • PDF

Subsidence estimation of breakwater built on loosely deposited sandy seabed foundation: Elastic model or elasto-plastic model

  • Shen, Jianhua;Wu, Huaicheng;Zhang, Yuting
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권4호
    • /
    • pp.418-428
    • /
    • 2017
  • In offshore area, newly deposited Quaternary loose seabed soils are widely distributed. There are a great number of offshore structures has been built on them in the past, or will be built on them in the future due to the fact that there would be no very dense seabed soil foundation could be chosen at planed sites sometimes. However, loosely deposited seabed foundation would bring great risk to the service ability of offshore structures after construction. Currently, the understanding on wave-induced liquefaction mechanism in loose seabed foundation has been greatly improved; however, the recognition on the consolidation characteristics and settlement estimation of loose seabed foundation under offshore structures is still limited. In this study, taking a semi-coupled numerical model FSSI-CAS 2D as the tool, the consolidation and settlement of loosely deposited sandy seabed foundation under an offshore breakwater is investigated. The advanced soil constitutive model Pastor-Zienkiewics Mark III (PZIII) is used to describe the quasi-static behavior of loose sandy seabed soil. The computational results show that PZIII model is capable of being used for settlement estimation problem of loosely deposited sandy seabed foundation. For loose sandy seabed foundation, elastic deformation is the dominant component in consolidation process. It is suggested that general elastic model is acceptable for subsidence estimation of offshore structures on loose seabed foundation; however, Young's modulus E must be dependent on the confining effective stress, rather than a constant in computation.

Static impedance functions for monopiles supporting offshore wind turbines in nonhomogeneous soils-emphasis on soil/monopile interface characteristics

  • Abed, Younes;Bouzid, Djillali Amar;Bhattacharya, Subhamoy;Aissa, Mohammed H.
    • Earthquakes and Structures
    • /
    • 제10권5호
    • /
    • pp.1143-1179
    • /
    • 2016
  • Offshore wind turbines are considered as a fundamental part to develop substantial, alternative energy sources. In this highly flexible structures, monopiles are usually used as support foundations. Since the monopiles are large diameter (3.5 to 7 m) deep foundations, they result in extremely stiff short monopiles where the slenderness (length to diameter) may range between 5 and 10. Consequently, their elastic deformation patterns under lateral loading differ from those of small diameter monopiles usually employed for supporting structures in offshore oil and gas industry. For this reason, design recommendations (API and DNV) are not appropriate for designing foundations for offshore wind turbine structures as they have been established on the basis of full-scale load tests on long, slender and flexible piles. Furthermore, as these facilities are very sensitive to rotations and dynamic changes in the soil-pile system, the accurate prediction of monopile head displacement and rotation constitutes a design criterion of paramount importance. In this paper, the Fourier Series Aided Finite Element Method (FSAFEM) is employed for the determination of static impedance functions of monopiles for OWT subjected to horizontal force and/or to an overturning moment, where a non-homogeneous soil profile has been considered. On the basis of an extensive parametric study, and in order to address the problem of head stiffness of short monopiles, approximate analytical formulae are obtained for lateral stiffness $K_L$, rotational stiffness $K_R$ and cross coupling stiffness $K_{LR}$ for both rough and smooth interfaces. Theses expressions which depend only on the values of the monopile slenderness $L/D_p$ rather than the relative soil/monopile rigidity $E_p/E_s$ usually found in the offshore platforms designing codes (DNV code for example) have been incorporated in the expressions of the OWT natural frequency of four wind farm sites. Excellent agreement has been found between the computed and the measured natural frequencies.

平坦氷荷重을 받는 細長形 해양구조물의 動的 거동 (Dynamic Responses of a Slender Offshore Structure Subject to Level Ice Load)

  • 최경식
    • 한국해양공학회지
    • /
    • 제9권2호
    • /
    • pp.156-166
    • /
    • 1995
  • Regrading the development of offshore natural gas field near Sakhalin Island which is an ice-infested area, this study aims to estimate the dynamic ice load for construction of offshore structures operating in this region. In this paper the design ice load and dynamic responses of a slender Arctic structure upon continuous ice movement are sutdied. Crushing agter a certain elastic deformation is assumed as a primary failure mechanism at the contact zone between semi-infinite level ice edge and the face of structure. Dynamic interaction forces are calculated using a modified Korzhavin's equation and a two-dimensional ice-structure interaction model is adopted. To verify the numerical model, dynamic analysis is performed for on of the Baltic Sea channel markers whose response patterns were presiously observed.

  • PDF

Estimation of excitation and reaction forces for offshore structures by neural networks

  • Elshafey, Ahmed A.;Haddara, M.R.;Marzouk, H.
    • Ocean Systems Engineering
    • /
    • 제1권1호
    • /
    • pp.1-15
    • /
    • 2011
  • Offshore structures are subjected to wind loads, wind generated wave excitations, and current forces. In this paper we focus on the wind generated wave excitations as the main source for the external forces on the structure. The main objective of the paper is to provide a tool for using deck acceleration measurements to predict the value of the force and moment acting on the offshore structure foundation. A change in these values can be used as an indicator of the health of the foundation. Two methods of analysis are used to determine the relationship between the force and moment acting on the foundation and deck acceleration. The first approach uses neural networks while the other uses a Fokker-Planck formulation. The Fokker-Plank approach was used to relate the variance of the excitation to the variance of the deck acceleration. The total virtual mass of the equivalent SDOF of the structure was also determined at different deck masses.