• 제목/요약/키워드: offshore platforms

검색결과 135건 처리시간 0.021초

오일 및 가스 플랫폼의 해체에 관한 연구 (A Study on the Decommissioning of Oil and Gas Platform)

  • 전창수
    • 한국산업융합학회 논문집
    • /
    • 제23권6_2호
    • /
    • pp.1081-1091
    • /
    • 2020
  • The most recent issue of offshore plants that produce oil and gas are the decommissioning engineering of aged or discontinued platforms. There are many platforms that are being dismantled in the United States, Europe, and areas in Southeast Asia. In particular, more than 400 old platforms in Southeast Asia (Indonesia, Malaysia) are preparing to dismantle. They are spread out across Southeast Asia with a water level of 50 meters and small-scale of less than 10,000 tons. However, this offshore plant decommissioning market is a very suitable market for small and medium-sized shipyards in Korea to enter with their established equipment and engineers. Platform decommissioning is conducted according to decommissioning procedures. However, there are some difficulties in market advances as no developed case studies or process models are established on how platform structures and components are to be dismantled and how the dismantled material is to be reused and recycled. Therefore, this study presented domestic and foreign regulations on the reuse and recycling of oil and gas producing offshore plant platforms, case analyses on developed decommissioning engineering, platform reuse and recycling guidelines, and platform and pipeline decommissioning processes and methods.

Effect of local joint flexibility on the fatigue lfe assessment of jacket-type offshore platform

  • Behrouz Asgarian;Parviz Kuzehgar;Pooya Rezadoost
    • Ocean Systems Engineering
    • /
    • 제14권1호
    • /
    • pp.1-16
    • /
    • 2024
  • This paper investigates the impact of local joint flexibility (LJF) on the fatigue life of jacket-type offshore platforms. Four sample platforms with varying geometric properties are modeled and analyzed using the Opensees software. The analysis considers the LJF of tubular joints through the equivalent element and flexible link approaches, and the results are compared to rigid modeling. Initially, modal analysis is conducted to examine the influence of LJF on the frequency content of the structure. Subsequently, fatigue analysis is performed to evaluate the fatigue life of the joints. The comparison of fatigue life reveals that incorporating LJF leads to reduced fatigue damage and a significant increase in the longevity of the joints in the studied platforms. Moreover, as the platform height increases, the effect of LJF on fatigue damage becomes more pronounced. In conclusion, considering LJF in fatigue analysis provides more accurate results compared to conventional methods. Therefore, it is essential to incorporate the effects of LJF in the analysis and design of offshore jacket platforms to ensure their structural integrity and longevity.

Seismic response evaluation of fixed jacket-type offshore structures by random vibration analysis

  • Abdel Raheem, Shehata E.;Abdel Aal, Elsayed M.;AbdelShafy, Aly G.A.;Fahmy, Mohamed F.M.
    • Steel and Composite Structures
    • /
    • 제42권2호
    • /
    • pp.209-219
    • /
    • 2022
  • Offshore platforms in seismically active areas must be designed to survive in the face of intense earthquakes without a global structural collapse. This paper scrutinizes the seismic performance of a newly designed and established jacket type offshore platform situated in the entrance of the Gulf of Suez region based on the API-RP2A normalized response spectra during seismic events. A nonlinear finite element model of a typical jacket type offshore platform is constructed taking into consideration the effect of structure-soil-interaction. Soil properties at the site were manipulated to generate the pile lateral soil properties in the form of load deflection curves, based on API-RP2A recommendations. Dynamic characteristics of the offshore platform, the response function, output power spectral density and transfer functions for different elements of the platform are discussed. The joints deflection and acceleration responses demands are presented. It is generally concluded that consideration of the interaction between structure, piles and soil leads to higher deflections and less stresses in platform elements due to soil elasticity, nonlinearity, and damping and leads to a more realistic platform design. The earthquake-based analysis for offshore platform structure is essential for the safe design and operation of offshore platforms.

해상용 부유식 풍력 발전기의 파고와 파주기에 따른 비정상 공력 특성 연구 (Unsteady Aerodynamic Characteristics of Floating Offshore Wind Turbine According to Wave Height and Wave Angular Frequency)

  • 전민우;김호건;이수갑
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.184.1-184.1
    • /
    • 2010
  • Floating wind turbines have been suggested as a feasible solution for going further offshore into deeper waters. However, floating platforms cause additional unsteady motions induced by wind and wave conditions, so that it is difficult to predict annual energy output of wind turbines by using conventional power prediction method. That is because sectional inflow condition on a rotor plane is varied by unsteady motion of floating platforms. Therefore, aerodynamic simulation using Vortex Lattice Method(VLM) were used to investigate the influence of motion on the aerodynamic performance of a floating offshore wind turbine. Simulation with individual motion of offshore platform were compared to the case of onshore platform and carried out according to the wave height and the wave angular frequency.

  • PDF

해상 지반조사 분야의 기술 동향 (Technical Trend of Offshore Geotechnical Site Investigations)

  • 조성민
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2007년 가을학술발표회
    • /
    • pp.639-653
    • /
    • 2007
  • Offshore geotechnical site investigation of the seabed ground has been a key factor of the successful construction of various types of offshore structures like as sea-crossing bridges, submerged tunnels, and other marine facilities. Offshore investigations are not easy tasks because of the wave, wind, tidal ebb and flows, and others. Recent developments of offshore equipment including platforms and testing devices like as maine cone penetrator have inspired us to get more reliable characteristics of the seafloor. General information on the offshore site investigations and technical trends concerned are introduced.

  • PDF

Developing an Evacuation Evaluation Model for Offshore Oil and Gas Platforms Using BIM and Agent-based Model

  • Tan, Yi;Song, Yongze;Gan, Vincent J.L.;Mei, Zhongya;Wang, Xiangyu;Cheng, Jack C.P.
    • 국제학술발표논문집
    • /
    • The 7th International Conference on Construction Engineering and Project Management Summit Forum on Sustainable Construction and Management
    • /
    • pp.32-41
    • /
    • 2017
  • Accidents on offshore oil and gas platforms (OOGPs) usually cause serious fatalities and financial losses considering demanding environment platforms locate and complex topsides structure platforms own. Evacuation planning on platforms is usually challenging. The computational tool is a good choice to plan evacuation by emergency simulation. However, the complex structure of platforms and varied evacuation behaviors usually weaken the advantages of computational simulation. Therefore, this study developed a simulation model for OOGPs to evaluate different evacuation plans to improve evacuation performance by integrating building information modeling (BIM) and agent-based model (ABM). The developed model consists of four parts: evacuation model input, simulation environment modeling, agent definition, and simulation and comparison. Necessary platform information is extracted from BIM and then used to model simulation environment by integrating matrix model and network model. During agent definition, in addition to basic characteristics, environment sensing and dynamic escape path planning functions are also developed to improve simulation performance. An example OOGP BIM topsides with different emergent scenarios is used to illustrate the developed model. The results showed that the developed model can well simulate evacuation on OOGPs and improve evacuation performance. The developed model was also suggested to be applied to other industries such as the architecture, engineering, and construction industry.

  • PDF

인장각형 부유식 해상풍력발전시스템의 하부 플랫폼 설계 및 운송·설치 관련 특성 고찰 (A review of the characteristics related to the platform design, transportation and installation of floating offshore wind turbine systems with a tension-leg platform)

  • 안현정;하윤진;박지용;김경환
    • 풍력에너지저널
    • /
    • 제14권4호
    • /
    • pp.29-42
    • /
    • 2023
  • In this study, research and empirical cases of floating offshore wind turbine systems with a tension-leg platform are investigated, and hydrodynamic and structural characteristics according to platform shapes and characteristics during transportation and installation are confirmed. Most platforms are composed of pontoons or corner columns, and these are mainly located below the waterline to minimize the impact of breaking waves and supplement the lack of buoyancy of the center column. These pontoons and corner columns are designed with a simple shape to reduce manufacturing and assembly costs, and some platforms additionally have reinforcements such as braces to improve structural strength. Most of the systems are assembled in the yard and then moved by tugboat and installed, and some platforms have been developed with a dedicated barge for simultaneous assembly, transportation and installation. In this study, we intend to secure the basic data necessary for the design, transportation, and installation procedures of floating offshore wind turbine systems with a tension-leg platform.

Numerical modeling of internal waves within a coupled analysis framework and their influence on spar platforms

  • Kurup, Nishu V.;Shi, Shan;Jiang, Lei;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • 제5권4호
    • /
    • pp.261-277
    • /
    • 2015
  • Internal solitary waves occur due to density stratification and are nonlinear in nature. These waves have been observed in many parts of the world including the South China Sea, Andaman Sea and Sulu Sea. Their effect on floating systems has been an emerging field of interest and recent offshore developments in the South China Sea where several offshore oil and gas discoveries are located have confirmed adverse effects including large platform motions and riser system damage. A valid numerical model conforming to the physics of internal waves is implemented in this paper and the effect on a spar platform is studied. The physics of internal waves is modeled by the Korteweg-de Vries (KdV) equation, which has a general solution involving Jacobian elliptical functions. The effects of vertical density stratification are captured by solving the Taylor Goldstein equation. Fully coupled time domain analyses are conducted to estimate the effect of internal waves on a typical truss spar, which is configured to South China Sea development requirements and environmental conditions. The hull, moorings and risers are considered as an integrated system and the platform global motions are analyzed. The study could be useful for future guidance and development of offshore systems in the South China Sea and other areas where the internal wave phenomenon is prominent.

Comparative behaviour of stiffened and unstiffened welded tubular joints of offshore platforms

  • Thandavamoorthy, T.S.
    • Steel and Composite Structures
    • /
    • 제3권5호
    • /
    • pp.321-331
    • /
    • 2003
  • The paper presents the results of an experimental investigation conducted on welded tubular joints, that are employed in offshore platforms, to study the behaviour and strength of these joints under axial brace compression loading. The geometrical configuration of the joints tested were T and Y. The nominal diameter of the chord and brace members of the joint were 324 and 219 mm respectively. The chord thickness was 12 mm and the brace 8 mm. The tested joints are approximately quarter size when compared to the largest joints in the platforms built in a shallow water depth of 80 m in the Bombay High field. Some of the joints were actually fabricated by a leading offshore agency which firm is directly involved in the fabrication of prototype structures. Strength of the internally ring-stiffened joints was found to be almost twice that of the unstiffened joints of the same configuration and dimensions. Bending of the chord as a whole was observed to be the predominant mode of deformation of the internally ring-stiffened joints in contrast to ovaling and punching shear of the unstiffened joints. It was observed in this investigation that unstiffened joint was stiffer in ovaling mode than in bending and that midspan deflection of unstiffened joint was insignificant when compared to that of the internally ring stiffened joint. The measured midspan deflection of the unstiffened joint in this investigation and its relation with the applied axial load compares very well with that predicted for the brace axial displacement by energy method published in the literature. A comparison of the measured deflection and ovaling of the unstiffened joint was made with that published by the author elsewhere in which numerical prediction of both quantities have been made using ANSYS software package. The agreement was found to be quite good.

Reserve capacity of fatigue damaged internally ring stiffened tubular joints

  • Thandavamoorthy, T.S.
    • Steel and Composite Structures
    • /
    • 제4권2호
    • /
    • pp.149-167
    • /
    • 2004
  • Offshore platforms have to serve in harsh environments and hence are likely to be damaged due to wave induced fatigue and environmental corrosion. Welded tubular joints in offshore platforms are most vulnerable to fatigue damage. Such damages endanger the integrity of the structure. Therefore it is all the more essential to assess the capacity of damaged structure from the point of view of its safety. Eight internally ring stiffened fatigue damaged tubular joints with nominal chord and brace diameter of 324 mm and 219 mm respectively and thickness 12 mm and 8 mm respectively were tested under axial brace compression loading to evaluate the reserve capacity of the joints. These joints had earlier been tested under fatigue loading under corrosive environments of synthetic sea water and hence they have been cracked. The extent of the damage varied from 35 to 50 per cent. One stiffened joint was also tested under axial brace tension loading. The residual strength of fatigue damaged stiffened joint tested under tension loading was observed to be less than one fourth of that tested under compression loading. It was observed in this experimental investigation that in the damaged condition, the joints possessed an in-built load-transfer mechanism. A bi-linear stress-strain model was developed in this investigation to predict the reserve capacity of the joint. This model considered the strain hardening effect. Close agreement was observed between the experimental and predicted results. The paper presents in detail the experimental investigation and the development of the analytical model to predict the reserve capacity of internally ring stiffened joints.