• Title/Summary/Keyword: offshore platforms

Search Result 135, Processing Time 0.026 seconds

Local joint flexibility equations for Y-T and K-type tubular joints

  • Asgarian, Behrouz;Mokarram, Vahid;Alanjari, Pejman
    • Ocean Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.151-167
    • /
    • 2014
  • It is common that analyses of offshore platforms being carried out with the assumption of rigid tubular joints. However, many researches have concluded that it is necessary that local joint flexibility (LJF) of tubular joints should be taken into account. Meanwhile, advanced analysis of old offshore platforms considering local joint flexibility leads to more accurate results. This paper presents an extensive finite-element (FE) based study on the flexibility of uni-planner multi-brace tubular Y-T and K-joints commonly found in offshore platforms. A wide range of geometric parameters of Y-T and K-joints in offshore practice is covered to generate reliable parametric equations for flexibility matrices. The formulas are obtained by non-linear regression analyses on the database. The proposed equations are verified against existing analytical and experimental formulations. The equations can be used reliably in global analyses of offshore structures to account for the LJF effects on overall behavior of the structure.

H filter design for offshore platforms via sampled-data measurements

  • Kazemy, Ali
    • Smart Structures and Systems
    • /
    • v.21 no.2
    • /
    • pp.187-194
    • /
    • 2018
  • This paper focuses on the $H_{\infty}$ filter design problem for offshore steel jacket platforms. Its objective is to design a full-order state observer for offshore platforms in presence of unknown disturbances. To make the method more practical, it is assumed that the measured variables are available at discrete-time instants with time-varying sampling time intervals. By modelling the sampling intervals as a bounded time-varying delay, the estimation error system is expressed as a time-delay system. As a result, the addressed problem can be transformed to the problem of stability of dynamic error between the system and the state estimator. Then, based on the Lyapunov-Krasovskii Functional (LKF), a stability criterion is obtained in the form of Linear Matrix Inequalities (LMIs). According to the stability criterion, a sufficient condition on designing the state estimator gain is obtained. In the end, the proposed method is applied to an offshore platform to show its effectiveness.

Method for determining the design load of an aluminium handrail on an offshore platform

  • Kim, Yeon Ho;Park, Joo Shin;Lee, Dong Hun;Seo, Jung Kwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.511-525
    • /
    • 2021
  • Aluminium outfitting is widely used in offshore platforms owing to its anti-corrosion ability and its light weight. However, various standards exist (ISO, NORSOK and EN) for the design of handrails used in offshore platforms, and different suppliers have different criteria. This causes great confusion for designers. Moreover, the design load required by the standards is not clearly defined or is uncertain. Thus, many offshore projects reference previous project details or are conservatively designed without additional clarification. In this study, all of the codes and standards were reviewed and analysed through prior studies, and data on variable factors that directly and indirectly affect the handrails applied to offshore platforms were analysed. A total of 50 handrail design load scenarios were proposed through deterministic and probabilistic approaches. To verify the proposed new handrail design load selection scenario, structural analysis was performed using SACS (offshore structural analysis software). This new proposal through deterministic and probabilistic approaches is expected to improve safety by clarifying the purpose of the handrails. Furthermore, the acceptance criteria for probabilistic scenarios for handrails suggest considering the frequency of handrail use and the design life of offshore platforms to prevent excessive design. This study is expected to prevent trial and error in handrail design while maintaining overall worker safety by applying a loading scenario suitable for the project environment to enable optimal handrail design.

Minimum life-cycle cost design of ice-resistant offshore platforms

  • Li, Gang;Zhang, Da-Yong;Yue, Qian-Jin
    • Structural Engineering and Mechanics
    • /
    • v.31 no.1
    • /
    • pp.11-24
    • /
    • 2009
  • In China, the oil and natural gas resources of Bohai Bay are mainly marginal oil fields. It is necessary to build both ice-resistant and economical offshore platforms. However, risk is involved in the design, construction, utilization, maintenance of offshore platforms as uncertain events may occur within the life-cycle of a platform under the extreme ice load. In this study, the optimum design model of the expected life-cycle cost for ice-resistant platforms based on cost-effectiveness criterion is proposed. Multiple performance demands of the structure, facilities and crew members, associated with the failure assessment criteria and evaluation functions of costs of construction, consequences of structural failure modes including damage, revenue loss, death and injury as well as discounting cost over time are considered. An efficient approximate method of the global reliability analysis for the offshore platforms is provided, which converts the implicit nonlinear performance function in the conventional reliability analysis to linear explicit one. The proposed life-cycle optimum design formula are applied to a typical ice-resistant platform in Bohai Bay, and the results demonstrate that the life-cycle cost-effective optimum design model is more rational compared to the conventional design.

Analysis and performance of offshore platforms in hurricanes

  • Kareem, Ahsan;Kijewski, Tracy;Smith, Charles E.
    • Wind and Structures
    • /
    • v.2 no.1
    • /
    • pp.1-23
    • /
    • 1999
  • Wind effects are critical considerations in the design of topside structures, overall structural systems, or both, depending on the water depth and type of offshore platform. The reliable design of these facilities for oil fields in regions of hostile environment can only be assured through better understanding of the environmental load effects and enhanced response prediction capabilities. This paper summarizes the analysis and performance of offshore platforms under extreme wind loads, including the quantification of wind load effects with focus on wind field characteristics, steady and unsteady loads, gust loading factors, application of wind tunnel tests, and the provisions of the American Petroleum Institute Recommended Practice 2A - Working Stress Design (API RP 2A-WSD) for the construction of offshore structures under the action of wind. A survey of the performance of platforms and satellite structures is provided, and failure mechanisms concerning different damage scenarios during Hurricane Andrew are examined. Guidelines and provisions for improving analysis and design of structures are addressed.

Vibration control for serviceability enhancement of offshore platforms against environmental loadings

  • Lin, Chih-Shiuan;Liu, Feifei;Zhang, Jigang;Wang, Jer-Fu;Lin, Chi-Chang
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.403-414
    • /
    • 2019
  • Offshore drilling has become a key process for obtaining oil. Offshore platforms have many applications, including oil exploration and production, navigation, ship loading and unloading, and bridge and causeway support. However, vibration problems caused by severe environmental loads, such as ice, wave, wind, and seismic loads, threaten the functionality of platform facilities and the comfort of workers. These concerns may result in piping failures, unsatisfactory equipment reliability, and safety concerns. Therefore, the vibration control of offshore platforms is essential for assuring structural safety, equipment functionality, and human comfort. In this study, an optimal multiple tuned mass damper (MTMD) system was proposed to mitigate the excessive vibration of a three-dimensional offshore platform under ice and earthquake loadings. The MTMD system was designed to control the first few dominant coupled modes. The optimal placement and system parameters of the MTMD are determined based on controlled modal properties. Numerical simulation results show that the proposed MTMD system can effectively reduce the displacement and acceleration responses of the offshore platform, thus improving safety and serviceability. Moreover, this study proposes an optimal design procedure for the MTMD system to determine the optimal location, moving direction, and system parameters of each unit of the tuned mass damper.

Commercial fishery assessment of Malaysian water offshore structure

  • Mohd, Mohd Hairil;Thiyahuddin, Mohd Izzat Mohd;Rahman, Mohd Asamudin A;Hong, Tan Chun;Siang, Hii Yii;Othman, Nor Adlina;Rahman, Azam Abdul;Rahman, Ahmad Rizal Abdul;Fitriadhy, Ahmad
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.9
    • /
    • pp.473-488
    • /
    • 2022
  • To have a better understanding of the impact of the PETRONAS oil and gas platform on commercial fisheries activities, Universiti Malaysia Terengganu (UMT) examined two approaches which are data collection from satellite and data collection from fishermen and anglers. By profiling the anglers who utilize reefed oil and gas structures for fishing, it can determine if the design and location of the reef platforms will benefit or negatively impacts those anglers and fisherman. Furthermore, this assessment will be contributing to the knowledge regarding the value of offshore oil and gas platforms as fisheries resources. Collectively, the apparent fishing activity data included, combined with the findings in the reefing viability index will help to inform PETRONAS's future decommissioning decisions and may help determine if the design and proposed locations for future rigs-to-reefs candidates would benefit commercial fishing groups, further qualifying them as appropriate artificial reef candidates. The method applied in this study is approaching by using a data satellite known as Google's Global Fishing Watch technology, which is one of the applications to measure commercial fishing efforts around the globe. The apparent commercial fishing effort around the selected twelve PETRONAS platforms was analyzed from January 2012 to December 2018. Using the data collection from fishermen which is the total estimation of commercial fish value cost (in Malaysia ringgit, MYR [RM]) in Peninsular Malaysia Asset, Sabah Asset, and Sarawak Operation region. The data were extracted every month from 2016 to 2018 from the National Oceanic and Atmospheric Administration database. Most of the selected platforms that show a high frequency of vessels around the year are platform KP-A, platform BG-A and platform PL-B. The estimated values of commercial fishes varied between platforms, with ranged from RM 10,209.92 to RM 89,023.78. Thus, platforms with high commercial fish value are selected for reefing in-situ and will serve multi-purposes and benefit the locals as well as the country. The current study has successfully assessed the potential reefing area of the Malaysian offshore environment with greater representativeness and this paper focused on its potential as a new fishing ground.

Adaptive backstepping control with grey theory for offshore platforms

  • Hung, C.C.;Nguyen, T.
    • Ocean Systems Engineering
    • /
    • v.12 no.2
    • /
    • pp.159-172
    • /
    • 2022
  • To ensure stable performance, adaptive regulators with new theories are designed for steel-covered offshore platforms to withstand anomalous wave loads. This model shows how to control the vibration of the ocean panel as a solution using new results from Lyapunov's stability criteria, an evolutionary bat algorithm that simplifies computational complexity and utilities. Used to reduce the storage space required for the method. The results show that the proposed operator can effectively compensate for random delays. The results show that the proposed controller can effectively compensate for delays and random anomalies. The improved prediction method means that the vibration of the offshore structure can be significantly reduced. While maintaining the required controllability within the ideal narrow range.

Dynamic quantitative risk assessment of accidents induced by leakage on offshore platforms using DEMATEL-BN

  • Meng, Xiangkun;Chen, Guoming;Zhu, Gaogeng;Zhu, Yuan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.22-32
    • /
    • 2019
  • On offshore platforms, oil and gas leaks are apt to be the initial events of major accidents that may result in significant loss of life and property damage. To prevent accidents induced by leakage, it is vital to perform a case-specific and accurate risk assessment. This paper presents an integrated method of Ddynamic Qquantitative Rrisk Aassessment (DQRA)-using the Decision Making Trial and Evaluation Laboratory (DEMATEL)-Bayesian Network (BN)-for evaluation of the system vulnerabilities and prediction of the occurrence probabilities of accidents induced by leakage. In the method, three-level indicators are established to identify factors, events, and subsystems that may lead to leakage, fire, and explosion. The critical indicators that directly influence the evolution of risk are identified using DEMATEL. Then, a sequential model is developed to describe the escalation of initial events using an Event Tree (ET), which is converted into a BN to calculate the posterior probabilities of indicators. Using the newly introduced accident precursor data, the failure probabilities of safety barriers and basic factors, and the occurrence probabilities of different consequences can be updated using the BN. The proposed method overcomes the limitations of traditional methods that cannot effectively utilize the operational data of platforms. This work shows trends of accident risks over time and provides useful information for risk control of floating marine platforms.

A study on entry into the offshore service market through slack model (해양플랜트 서비스 시장에의 진입 방안 연구 -슬랙모델을 이용하여-)

  • Oh, Jin-Seok;Kim, Gil-Soo;Merdas, Reza;Jang, Jae-Hee
    • Journal of Navigation and Port Research
    • /
    • v.38 no.2
    • /
    • pp.163-170
    • /
    • 2014
  • Domestic offshore business is oriented toward building drill-ships, FPSOs(Floating Production Storage and Off loading). But the equipments needed for offshore platforms are not so developed in Korea because the equipments can not be verified in Korean territory where the offshore platforms are not stationed. This study aims at finding some methods on entering into OSI for the maintenance and disassembly of fixed offshore platforms. Slack model is adopted to find out how slack assets could play a role in penetrating foreign markets. Firstly, entry into the South East Asian market is recommended. Secondly, forming a consortium is suggested by which taking part in offshore market can be easier. Finally, strategic plans for obtaining the technology for ship building equipments are needed as well as government support.