• Title/Summary/Keyword: offshore

Search Result 3,484, Processing Time 0.029 seconds

Evaluation of Hydrate Inhibition Performance of Water-soluble Polymers using Torque Measurement and Differential Scanning Calorimeter (토크 측정과 시차주사열량계를 이용한 수용성 고분자 화합물의 하이드레이트 저해 성능 평가)

  • Shin, Kyuchul;Park, Juwoon;Kim, Jakyung;Kim, Hyunho;Lee, Yohan;Seo, Yongwon;Seo, Yutaek
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.814-820
    • /
    • 2014
  • In this work, hydrate inhibition performance of water-soluble polymers including pyrrolidone, caprolactam, acrylamide types were evaluated using torque measurement and high pressure differential scanning calorimeter (HP ${\mu}$-DSC). The obtained experimental results suggest that the studied polymers represent the kinetic hydrate inhibition (KHI) performance. 0.5 wt% polyvinylcaprolactam (PVCap) solution shows the hydrate onset time of 34.4 min and subcooling temperature of 15.9 K, which is better KHI performance than that of pure water - hydrate onset time of 12.3 min and subcooling temperature of 6.0 K. 0.5 wt% polyvinylpyrrolidone (PVP) solution shows the hydrate onset time of 27.6 min and the subcooling temperature of 13.2 K while polyacrylamide-co-acrylic acid partial sodium salt (PAM-co-AA) solution shows less KHI performance than PVP solution at both 0.5 and 5.0 wt%. However, PAM-co-AA solution shows slow growth rate and low hydrate amount than PVCap. In addition to hydrate onset and growth condition, torque change with time was investigated as one of KHI evaluation methods. 0.5 wt% PVCap solution shows the lowest average torque of 6.4 N cm and 0.5 wt% PAM-co-AA solution shows the average torque of 7.2 N cm. For 0.5 wt% PVP solution, it increases 11.5 N cm and 5.0 wt% PAM-co-AA solution shows the maximum average torque of 13.4 N cm, which is similar to the average torque of pure water, 15.2 N cm. Judging from the experimental results obtained by both an autoclave and a HP ${\mu}$-DSC, the PVCap solution shows the best performance among the KHIs in terms of delaying hydrate nucleation. From these results, it can be concluded that the torque change with time is useful to identify the flow ability of tested solution, and the further research on the inhibition of hydrate formation can be approached in various aspects using a HP ${\mu}$-DSC.

Dissolved Copper and Nickel in the surface water of East Sea, Korea (동해 표층수중 용존 Cu, Ni의 분포 특성)

  • Yoon, Sang Chol;Yoon, Yi Yong;Suh, Young Sang
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.4
    • /
    • pp.257-267
    • /
    • 2014
  • The distributions of trace metals in the East Sea were investigated during the R/V Lavrentyev cruise (July 2009) in which four transects from Russia shore to South were conducted to collect 25 surface water samples. The total dissolved concentrations of Cu and Ni were measured using ICP-MS, DRC-e. In the coastal area, their concentrations of Russia shore (Cu, 1.51; Ni, 1.82 nM) were 1.9 times for Cu and 2.0 times for Ni lower than Korea shore (Cu, 2.87; Ni, 3.71 nM). In the subregion, their concentrations of Warm region (Cu, 3.03; Ni, 2.28 nM) were higher for Cu than Cold region (Cu, 2.04; Ni, 2.28 nM). The distributions of Cu and Ni concentrations were divided by lowest level at $10^{\circ}C$ of water temperature. In this study period, the surface water temperatures of Russia shore and Japan basin were lower than $10^{\circ}C$ and them of Ulleung basin and Sakhalin shore were higher. Below $10^{\circ}C$, Cu and Ni concentrations increased when surface water temperatures decreased. Above $10^{\circ}C$, their concentrations increased with temperature, which showed highest concentrations in the Ulleung basin, directly influenced by flux from East Korean Warm Current. By comparing with other sea areas (Western Mediterranean, Atlantic), Cu concentrations in the East Sea were a little higher and Ni concentrations were lower. Particularly as the level of Cu in the offshore in the Ulleung basin were higher than in the coastal area, We can suggest that the atmospheric flux of Cu is relatively important in this area.

Paleostress Reconstruction in the Tertiary Basin Areas in Southeastern Korea (한반도 동남부 제3기 분지지역에서의 고응력장 복원)

  • Moon, Tae-Hyun;Son, Moon;Chang, Tae-Woo;Kim, In-Soo
    • Journal of the Korean earth science society
    • /
    • v.21 no.3
    • /
    • pp.230-249
    • /
    • 2000
  • Southeastern Korean Peninsula has undergone the polyphase deformations according to the changes of regional tectonic settings during the Cenozoic. Through analyses of more than 600 fault-slip data gathered in the study area, five tectonic events are revealed as the followings: (I) NW-SE transtension, (II) NW-SE transpression, (III) NE-SW pure or radial extension, (IV) NNE-SSW transpression, (V) NE or ENE-WSW transpression. Event I was induced by the pull-apart type extension of the East Sea during 24-16 Ma, which resulted in the NW-SE extension of the Tertiary Basins in SE Korea. Event II was resulted from the collision of SW Japan and Izu-Bonnin Arc (or Kuroshio Paleoland) on the Philippine Sea Plate at ${\sim}$ 15 Ma, which stopped the extension of the Tertiary Basins and originated the uplift of fault blocks in and around SE Korean Peninsula. It was continued until ${\sim}$ 10 Ma. Event III is interpreted as the post-tectonic event after the block-uplifts due to the event II, which indicates a temporal lull in activity of the Philippine Sea Plate since 10 Ma. Event IV was originated from the resumption in activity of the Philippine Sea Plate which was restarted to move toward north at ${\sim}$ 6 Ma. The event made the EW compressional structures behind SW Japan as well as in the Korea Straits, and thus the block-uplifts in SE Korea was resumed again. Lastly, event V was resulted from the gradual decrease in influence of the Philippine Sea Plate and the cooperative compression due to the subduction of the Pacific Sea Plate and the collision of the Indian Plate since 5-3.5 Ma, which generated the NS compressional structures in the offshore along the eastern coast of the Korean Peninsula and thrust up the fault-blocks toward west. This event is continuing so far, and thus is making the active faultings resulting in the present earthquakes of the Korean Peninsula.

  • PDF

Geochemical Characteristics of the Hydrocarbons from the Block 6-1, Ulleung Basin (울릉 분지 6-1 광구에서 발견된 탄화수소의 지화학적 특성)

  • Lee, Young-Joo;Cheong, Tae-Jin;Oh, Jae-Ho;Park, Se-Jin;Yi, Song-Suk
    • The Korean Journal of Petroleum Geology
    • /
    • v.11 no.1 s.12
    • /
    • pp.1-8
    • /
    • 2005
  • Seventeen exploratory wells have been drilled in the Block VI-1 of offshore Korea, which is located in the southern part or the Ulleung Basin. Gas show has been recognized from most of the wells, and gas and condensate have been accompanied in some wells. Commercial discovery of gas, accompanied by condensate, has been made from Gorae V well. The reservoir gases or the Dolgorae III, Gorae I, and Gorae V wells in the Ulleung Basin mainly consists of hydrocarbon gases (>93%). These gases are thermogenic wet gases which contain more than 96% of the methane and result from the cracking of petroleum or kerogen. Based on the chemistry and composition of the gases and stable isotope data, they seem to be generated from different source rocks. The condensates from the Gorae I and V wells are mostly generated from terrestrial organic matter. Lacustrine organic matter may not play an important role for the generation of these condensates. The condensates from the Gorae V wells consist predominantly of terrestrial organic matter but with minor subsidiary input from marine organic matter. The condensates from Gorse I and V wells may be generated from different source rocks. The thermal maturity level of the condensates from the Gorae V well ranges from early to middle oil generation zone and condensate from Gorae I reaches middle oil window. Correlation or the thermal maturation level of the condensates and organic matter in the sediments reveals that a depth of the generation of liquid hydrocarbons can be inferred to 3,000 m and 3,900 m for the Gorae V and I wells, respectively. Gorae V well, however, did not reach the target depth and the geochemical data of the Gorae I well were obscured due to the severe sediment caving in.

  • PDF

A Study on Detailed Bathymetry and Geophysical Characteristics of the Summit of the Dokdo Volcano (독도 화산체 정상부해역의 정밀해저지형 및 지구물리학적 특성 연구)

  • Kim, Chang Hwan;Park, Chan Hong;Lee, Myoung Hoon;Choi, Soon Young;Jou, Hyeong Tae
    • Economic and Environmental Geology
    • /
    • v.45 no.6
    • /
    • pp.685-695
    • /
    • 2012
  • We studied the detailed bathymetry and the geophysical characteristics of the summit of the Dokdo volcano using mutibeam echosounding and geophysical survey data. The bathymetry around the main east and west islets of the Dokdo volcano shows very shallow within about 10 m water depth. From near islets to about 30 m b.s.l., the shallow water area has very steep slope and many irregular sunken rocks. The area from about 30 m to about 80 m b.s.l. shows gentle rises and falls, and less steep slope. The area from 80 m b.s.l. has gradually flat undulation and smooth slope seabaed and is extended to offshore. The main islets of the Dokdo volcano and the rocky sea bottom elongated from the islets might be the residual part of the eroded and collapsed main crater of the Dokdo volcano. The bathymetry and the seafloor image(from backscattering) data show small craters, assumed to be formed by the eruption of later volcanism. The seafloor images propose that, except some areas with shallow sand sedimentary deposits, there are typical rocky bottom such as rocky protrusions and lack of sediments in the main morphology of the survey area. The stepped slopes of the seabed are deduced to be submarine terraces. The several prominent submarine terraces are found at the summit of the Dokdo volcano, suggesting repetition of sea level changes(transgressions and regressions) in the Quaternary. The results of the magnetic anomaly and the analytic signal have a good coherence with other geophysical consequences regarding to the location of the residual crater.

Numerical Simulation of Residual Currents and tow Salinity Dispersions by Changjiang Discharge in the Yellow Sea and the East China Sea (황해 및 동중국해에서 양쯔강의 담수유입량 변동에 따른 잔차류 및 저염분 확산 수치모의)

  • Lee, Dae-In;Kim, Jong-Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.2
    • /
    • pp.67-85
    • /
    • 2007
  • A three-dimensional hydrodynamic model with the fine grid is applied to simulate the barotropic tides, tidal currents, residual currents and salinity dispersions in the Yellow Sea and the East China Sea. Data inputs include seasonal hydrography, mean wind and river input, and oceanic tides. Computed tidal distributions of four major tides($M_2,\;S_2,\;K_1$ and $O_1$) are presented and results are in good agreement with the observations in the domain. The model reproduces well the tidal charts. The tidal residual current is relatively strong around west coast of Korea including the Cheju Island and southern coast of China. The current by $M_2$ has a maximum speed of 10 cm/s in the vicinity of Cheju Island with a anti-clockwise circulation in the Yellow Sea. General tendency of the current, however, is to flow eastward in the South Sea. Surface residual current simulated with $M_2$ and with $M_2+S_2+K_1+O_1$ tidal forcing shows slightly different patterns in the East China Sea. The model shows that the southerly wind reduces the southward current created by freshwater discharge. In summer during high runoff(mean discharge about $50,000\;m^3/s$ of Yangtze), low salinity plume-like structure(with S < 30.0 psu) extending some 160 km toward the northeast and Changjiang Diluted Water(CDW), below salinity 26 psu, was found within about 95 km. The offshore dispersion of the Changjiang outflow water is enhanced by the prevailing southerly wind. It is estimated that the inertia of the river discharge cannot exclusively reach the around sea of Cheju Island. It is noted that spatial and temporal distribution of salinity and the other materials are controlled by mixture of Changjiang discharge, prevailing wind, advection by flowing warm current and tidal current.

  • PDF

The Budget of Nutrients in the Estuaries Near Mokpo Harbor (목포항 주변 하구역의 영양염 수지)

  • Kim, Yeong-Tae;Choi, Yoon-Seok;Cho, Yoon-Sik;Oh, Hyun-Taik;Jeon, Seung-Ryul;Choi, Yong Hyeon;Han, Hyoung-Kyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.708-722
    • /
    • 2016
  • Land-Ocean Interactions in the Coastal Zone (LOICZ) models for nutrient budgets were used to estimate the seasonal capacity of the Youngsan Estuary and Youngam-Geumho Estuary to sink and/or supply nutrients such as dissolved inorganic phosphorus (DIP) and nitrogen (DIN) to provide an understanding of the behavior of the coupled biogeochemical cycles of phosphorus and nitrogen in the estuaries (Youngsan Estuary, Youngam-Geumho Estuary) near Mokpo Harbor. During non-stratified periods (May, September, and November, 2008), simple three-box models were applied in each sub-region of the system, while a two-layer box model was applied during on-site observation of stratification development (July, 2008). The resulting mass-balance calculation indicated that even after large discharges from artificial lakes (in May and July), DIP influxes due to a mixing exchange ($V_{X-3}$, or $V_{deep}$) were more than terrigenous loads, indicating the backward transportation of nutrients from a marine source. The model results also indicated that for nutrient loads (DIP and DIN fluxes) in September, an extreme congestion of nutrients occurred around the mouths (sub-region III of the model) of the estuaries, possibly due to an imbalance in physical circulations between the estuaries and offshore locations. In November, the Youngam-Geumho Estuary, into which freshwater was discharged from artificial lakes (Youngam and Geumho Lake), showed nutrient enrichment in the water column, but the Youngsan Estuary showed nutrient depletion. In conclusion, to efficiently control water quality in the estuaries near Mokpo Harbor, integrated environmental management programs should be implemented. I.e., the reduction of nutrient loads from land basins as well as the deposit of nutrient loads into adjacent coastal lines.

The Latest Progress on the Development of Technologies for $CO_2$ Storage in Marine Geological Structure and its Application in Republic of Korea (해저 지질구조내 $CO_2$ 저장기술의 연구개발 동향 및 향후 국내 실용화 방안)

  • Kang, Seong-Gil;Huh, Cheol
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.1
    • /
    • pp.24-34
    • /
    • 2008
  • To mitigate the climate change and global warming, various technologies have been internationally proposed for reducing greenhouse gas emissions. Especially, in recent, carbon dioxide capture and storage (CCS) technology is regarded as one of the most promising emission reduction options that $CO_2$ be captured from major point sources (eg., power plant) and transported for storage into the marine geological structure such as deep sea saline aquifer. The purpose of this paper is to review the latest progress on the development of technologies for $CO_2$ storage in marine geological structure and its perspective in republic of Korea. To develop the technologies for $CO_2$ storage in marine geological structure, we carried out relevant R&D project, which cover the initial survey of potentially suitable marine geological structure fur $CO_2$ storage site and monitoring of the stored $CO_2$ behavior, basic design for $CO_2$ transport and storage process including onshore/offshore plant and assessment of potential environmental risk related to $CO_2$ storage in geological structure in republic of Korea. By using the results of the present researches, we can contribute to understanding not only how commercial scale (about 1 $MtCO_2$) deployment of $CO_2$ storage in the marine geological structure of East Sea, Korea, is realized but also how more reliable and safe CCS is achieved. The present study also suggests that it is possible to reduce environmental cost (about 2 trillion Won per year) with developed technology for $CO_2$ storage in marine geological structure until 2050.

  • PDF

The Effect of Variations in the Tsushima Warm Currents on the Egg and Larval Transport of Anchovy in the Southern Sea of Korea (한국 남해의 대마난류 변동이 멸치 난$\cdot$자어의 연안역 수송에 미치는 영향)

  • CHOO Hyo-Sang;KIM Dong-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.2
    • /
    • pp.226-244
    • /
    • 1998
  • The relationship between the transport of eggs and larvae of Anchovy (Engraulis japonica) and the oceanic condition in the southern sea of Korea was examined on August and November 1996. In summer (August), when the Tsushima Warm Current is strong near to the coast, the warm waters such as warm streamers from the Tsushima Warm Current intrude into the coastal area, and cyclonic circulations are formed. The warm water intrusions also generate wakes around Komun Island, Sori Island and Koje Island. In the coastal area where the warm water intrusions occur, the nutrients, dissolved oxygen, suspended solid and chlorophyll are concentrated in probably relation to the upwelling concerned with this warm streamer and/or the wakes. Anchovy eggs and larvae are transported to the coastal area by the cyclonic circulations. The hatching and growth of anchovy larvae are increased because of high primary production in the cyclonic circulations. However, as the amount of Copepods which are a main food for anchovy larvae decrease in the coastal area, anchovy larvae seem to move to the Isushima Warm Water area for seeking a prey. In autumn (November), the Tsushima Warm Current is far away from the coast. In this season the warm water intrusions almost disappear, and the small scaled frontal eddies are formed between the coastal water and the Tsushima Warm Water. As the surface water moves towards offshore, few anchovy eggs and larvae were sampled in the survey area. Chemical and biological substances are concentrated in the leftdown sides of the small scaled frontal eddies because of eddy formation.

  • PDF

Distribution of Indicator Species of Copepods and Chaetognaths in the Southeastern Area of the Yellow Sea and Their Relationship to the Characteristics of Water Masses (황해 동남 해역의 수괴지표성 요각류 및 모악류의 분포와 수괴특성)

  • PARK Joo-Suck;LEE Sam-Seuk;KANG Young-Shil;LEE Byung-Don;HUH Sung-Hoi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.25 no.4
    • /
    • pp.251-264
    • /
    • 1992
  • Distribution of indicator species of copepods and chaetognaths were studied as an indicator species of water mass in the southeastern area of the Yellow Sea. Undinula darwini, Lucicutia flavicornis, Pleuromamma gracilis, Euchaeta resselli, Euchaeta plane and Sagitta enflata were found to be reliable indicator species for determining warm water mass. Of these species, E. plana and E. rusrelli have a weak tolerance on the low temperature. Sagitta crassa was indicator species of neritic waters; Sagitta bedoti was that of mixing waters. Centropages abdominalis represented neritic cold waters. In February, U darwini, L. flavicornis, P. gracilis, E. russelli, E. plana and S. enflata occurred in the western waters of Cheju-Do where warm waters over $14^{\circ}C$ occupied. Centropages abdominalis occurred in the northern area beyond Chindo with water temperature less than $10^{\circ}C$. E. plana, E. russelli and S. bedoti were found at the regions between Cheju-Do and Chindo where the water temperature was $12- 14^{\circ}C$ corresponding to the mixing waters. Based on cluster analysis and T-S diagram in February three different water masses were identified from the south to the north. In August, water masses were analyzed at two different layers, 0-20m and 20m- bottom layers, separated by bhermocline depth. In 0-20m layer, E. plana and E. russelli were found from the western waters of Cheju-Do to Daehuksando. In 20m- bottom layer, E. russelli and E plena occurred at the northwestern waters of Cheju-Do with the water temperature warmer than $12^{\circ}C.\;C.$ abdominalis was found at the northern area beyond Chindo. Based on the cluster analysis and T-S diagram in August three different water masses at 0-20m and 20m-bottom layers were identified from the coast to the offshore. C. abdominalis was found at the adjacent water of Chindo at 0-20m layer and the northern area beyond Chindo at 20m~bottom layer. This fact suggested that the cold water mass existed at tile adjacent waters of Chindo in summer.

  • PDF