• Title/Summary/Keyword: off-load

Search Result 909, Processing Time 0.03 seconds

Anti-sway Control of Crane (기중기의 흔들림 방지제어)

  • Roh, Chi-Weon;Lee, Kwang-Won
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.977-979
    • /
    • 1996
  • This paper presents an algorithm to control the undesirable sway of a suspended load in the crane system that has a trade-off between positioning the load and suppressing the sway of the load. The aim is to transport the load to a specified place with small sway angle as quickly as possible. Dynamic model is based on a simple pendulum driven by a velocity drive that is mostly used for actuating a trolley in industry. Proposed algorithm is composed of two parts : one is a off-line optimal trajectory generator, the other on-line tracking control. The former produces optimal trajectories minimizing energy under the speed constraint of velocity drive. The latter controls outputs to track the generated trajectories. Digital simulations and experiments are performed on a pilot crane to demonstrate the performance of the proposed control algorithm.

  • PDF

Rip-off Failure Mechanism of Reinforced Concrete Beams Strengthened with CFRP Plate (CFRP로 성능향상된 철근콘크리트 보의 Rip-off 파괴메커니즘 고찰)

  • Sim Jong-Sung;Moon Do-Young;Park Cheol-Woo;Park Sung-Jae;Choi Kwang-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.993-1000
    • /
    • 2005
  • Various types of FRP materials have been applied for structural strengthening of RC beams in various forms. When CFRP plates are used, a premature failure used to occur before enough strengthening effect appears. This is primarily due to the rip-off of CFRP Plate attached on RC beams. Despite of numerous studies on the rip-off failure of externally strengthened RC beams, its failure mechanism is not definitely clarified yet. Investigations from literatures have shown that the rip-off failure is dependant on the vertical and shear stresses at the level of main reinforcements in RC beams. This study suggests an analytical model to Investigate the rip-off failure load based on the stress states at the level of main reinforcements. The proposed model is relatively simple and produces very comparable results to the test data. It is believed that the proposed model can be successfully used to provide more information on the rip-off failure mechanisms and its prevention.

Structural Analysis of Snap Ring in Thrust Cut-Off System (Thrust Cut-Off 시스템에서의 스냅링 구조해석)

  • 김경희
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.21-21
    • /
    • 2000
  • Thrust Cut-Off 시스템은 로켓 발사체의 분리시의 충격에 의한 비행방향오차 및 비행거리를 감소하고 Pay-Load 부에 추진력을 증가시키고 분리된 추진 기관부의 낙하위치 예측을 용이하게 한다. 이와 같이 중요한 역할을 하게되는 Thrust Cut-Off 시스템에서 스냅링은 핵심적인 역할을 하게 된다. 정상적인 추진체의 작동 시에는 고압의 연소가스를 지탱하고 분리 시에는 쉽게 분리되어 연소가스를 역 분사 시켜야한다.(중략)

  • PDF

The Analysis of the LCL Set-up Parameters for Satellite Power Distribution (위성전원분배를 위한 LCL 동작 파라미터 설정분석)

  • Lim, Seong-Bin;Jeon, Hyun-Jin;Kim, Kyung-Soo;Kim, Tae-Youn
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.56-64
    • /
    • 2011
  • In this paper, the characteristics of LCL set-up parameters for the satellite load distribution are analyzed under the electrical system environment, implemented the LCL circuits and evaluated the performance and its behaviour. Recently, it is implemented the load distribution circuit by latching current limiter(LCL) rather than conventional fuse and relay for the protection of the satellite power system from a fault load. The LCL circuit is composed of the electrical components, not mechanical parts with the fuse and relay. When detected the over current on a fault load, it is activated to maintain the trip-off level for set-up time and then cut-off the load power by the active control. It is more flexible and provided a chance to reuse of the load in case of temporarily event, but the fuse and relay can't be used again after activating due to the physical disconnection. However, for implementation of LCL circuit, it should be carefully considered the behavior of the LCL circuit under the worst electrical system environment and applied it to define the set-up parameters related with over-current inhibition.

Effects of Surface Roughness on the Performance of a Gas Foil Thrust Bearing (표면 거칠기가 가스 포일 스러스트 베어링의 성능에 미치는 영향)

  • Sung Ho Hwnag;Dae Yeon Kim;Tae Ho Kim
    • Tribology and Lubricants
    • /
    • v.39 no.2
    • /
    • pp.81-85
    • /
    • 2023
  • This study presents an experimental investigation of the effects of surface roughness on gas foil thrust bearing (GFTB) performance. A high-speed motor with the maximum speed of 80 krpm rotates a thrust runner and a pneumatic cylinder applies static loads to the test GFTB. When the motor speed increases and reaches a specific speed at which a hydrodynamic film pressure generated within the gap between the thrust runner and test GFTB is enough to support the applied static load, the thrust runner lifts off from the test GFTB and the friction mechanism changes from the boundary lubrication to the hydrodynamic lubrication. The experiment shows a series of lift-off test and load-carrying capacity test for two thrust runners with different surface roughnesses. For a constant static load of 15 N, thrust runner A with its lower surface roughness exhibits a higher start-up torque but lower lift-off torque than thrust runner B with a higher surface roughness. The load capacity test at a rotor speed of 60 krpm reveals that runner A results in a higher maximum load capacity than runner B. Runner A also shows a lower drag torque, friction coefficient, and bearing temperature than runner B at constant static loads. The results imply that maintaining a consistent surface roughness for a thrust runner may improve its static GFTB performance.

Program Development for Design and Part Load Performance Analysis of Single-Shaft Gas Turbines (단축가스터빈의 설계점 및 부분부하 성능해석 프로그램 개발)

  • Kim, Dong-Seop;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2409-2420
    • /
    • 1996
  • This paper describes the development of a general program for the design and part load performance analysis of single-shaft-heavy-duty gas turbines. Efforts are made to fully represent the real component features by the characteristic models and special emphasis is put on the modeling of cooled turbine stages. The design analysis routine is applied to simulate the performance of current gas turbines and its appropriateness for system analysis is validated. Meanwhile, the component parameters of real engines which describe the technology level are obtained. The program is extended to predicting the part load operation of gas turbines with the aid of models for the off-design characteristics of compressor, turbine and other main components. Part load simulation can be carried out only with limited numbers of input data. It is demonstrated that the program accurately estimates the part load characteristics of real turbines.

Experimental Study on the Load Carrying Performance and Driving Torque of Gas Foil Thrust Bearings (가스 포일 스러스트 베어링의 하중지지 성능 및 구동 토크에 관한 실험적 연구)

  • Kim, Tae Ho;Lee, Tae Won;Park, Moon Sung;Park, Jungmin;Kim, Jinsung;Jeong, Jinhee
    • Tribology and Lubricants
    • /
    • v.31 no.4
    • /
    • pp.141-147
    • /
    • 2015
  • Gas foil thrust bearings (GFTBs) have attractive advantages over rolling element bearings and oil film thrust bearings, such as oil-free operation, high speed stability, and high-temperature operation. However, GFTBs have lower load carrying capacity than the other two types of bearings owing to the inherent low gas viscosity. The load carrying capacity of GFTBs depends mainly on the compliance of the foil structure and the formed hydrodynamic wedge, where the gas pressure field is generated between the top foil and the thrust runner. The load carrying capacity of the GFTBs is very important for the suitable design of oil-free turbomachinery with high performance. The aim of the present study is to identify the characteristics of the load carrying performance of GFTBs. A new test rig for the experimental measurements is designed to provide static loads up to 800 N using a pneumatic cylinder. The maximum operating speed of the driving motor is 30,000 rpm. A series of experimental tests—lift-off test, static load performance test, and maximum load capacity test—estimate the performance of a six-pad GFTB, in terms of the static load, driving torque, and temperature. The maximum load capacity is determined by increasing the static load until the driving torque rises suddenly with a sharp peak. The test results show that the torque and temperature increase linearly with the static load. The estimated maximum load capacity per unit area is approximately 80.5 kPa at a rotor speed of 25,000 rpm. The test results can be used as a design guideline for GFTBs for realizing oil-free turbomachinery.

Comparison of the Tribological behaviors of Various Organic Molecular Films (다양한 유기분자막의 마찰특성 비교)

  • ;;;V. Tsukruk
    • Tribology and Lubricants
    • /
    • v.17 no.5
    • /
    • pp.386-390
    • /
    • 2001
  • Monolayers such as self-assembled monolayer (SAM) have received considerable attention to reduce stiction and friction in micro-devices and microelectromechanical systems (MEMS). Various organic molecular films were investigated to obtain better understanding of their tribological behaviors and adhesion property. The organic molecular films studied in this work are: epoxysilane SAMs, octadecyltricholosilane (OST), multi-layers composed of epoxysilane SAMs, poly[styrene-b-(ethylene-co-butylene)-b-styrene](SEBS) and compound of epoxy resin and poly (paraphenylene)(EP/PPP). The pull-off forces of these films were also obtained from force-distance curves measured in static mode of operation of atomic force microscope(AFM). Tribological tests were conducted with a ball-on-flat reciprocating friction tester. The OST showed the lowest pull-off force, indicating its low adhesion property. It was revealed that, the OST, EP/PPP and the multi-layer of epoxysilane SAMs, SEBS and EP/PPP exhibited good tribological properties at the lower load (0.3 N) whereas the OST showed best performance at the higher load (1.8 N).

Transient Responses of an Airplane Taking off from and Landing on a Very Large Floating Structure in Regular Waves (규칙파중 항공기 이.착륙시 초대형 부유식 해양구조물의 천이 응답 해석)

  • 신현경;이호영;임춘규;강점문;윤명철
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.26-30
    • /
    • 2001
  • Up to now, Most studies of hydroelasticity are about frequency domain analysis. Those aren't suited for analysis of the landing take-off, and dropping of aircraft on a structure. So, the concern of this paper is the transient behavior of a VLFS subjected to dynamic load, induced by airplane landing and take-off. To predict the added mass, damping coefficient, and wave exciting force, the source-dipole distribution method was used in the frequency domain. The responses are accomplished by using the FEM scheme. A time domain analysis method is based on the Newmark β method to pursue the time step procedure, taking advantage of memory effect function for hydrodynamic effects.

  • PDF

Comparison of the tribological behaviors of various organic molecular films (다양한 유기분자막의 마찰특성 비교)

  • ;;;V. Tsukruk
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.49-54
    • /
    • 2001
  • Monolayers such as self-assembled monolayer (SAM) have received considerable attention to reduce stiction and friction in micro-devices and microelectromechanical systems (MEMS). Various organic molecular films were investigated to obtain better understanding of their tribological behaviors and adhesion property. The organic molecular films studied in this work are: epoxysilane SAMs, octadecyltricholosilane (OST), multi-layers composed of epoxysilane SAMs, poly〔styrene-b-(ethylene-co-butylene)-b-styrene〕(SEBS) and compound of epoxy resin and poly (paraphenylene) (EP/PPP). The pull-off forces of these films were also obtained from force-distance curves measured in static mode of operation of atomic force microscope (AFM). Tribological tests were conducted with a ball-on-flat reciprocating friction tester. The OST showed the lowest pull-off force, indicating its low adhesion property. It was revealed that, the OST, EP/PPP and the multi-layer of epoxysilane SAMs, SEBS and EP/PPP exhibited good tribological properties at the lower load (0.3 N) whereas the OST showed best performance at the higher load (1.8 N).

  • PDF