• Title/Summary/Keyword: off-axis mirror

Search Result 64, Processing Time 0.022 seconds

Analysis of Off-axis Integral Floating System Using Concave Mirror

  • Kim, Young Min;Jung, Kwang-Mo;Min, Sung-Wook
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.270-276
    • /
    • 2012
  • An off-axis integral floating system using a concave mirror is analyzed to resolve the image distortion incurred by the off-axis optical arrangement. The concave mirror can be adopted as the floating device to improve the optical efficiency. The image distortion due to the tilting axis of the concave mirror needs to be analyzed precisely to generate the pre-distortion image. In this paper, we calculate the image deformation in the off-axis structure of the concave mirror using the geometrical optics. Using the calculation results, the compensated elemental image can be generated for the pre-distortion integrated image, which can be projected to the floating 3D image without image distortion. The basic experiments of the off-axis integral floating are presented to prove and verify the proposal.

Optical System Design for a Head-up Display Using Aberration Analysis of an Off-axis Two-mirror System

  • Kim, Byung-Hyun;Park, Sung-Chan
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.481-487
    • /
    • 2016
  • This study presents a new optical system for a combiner-type head-up display (HUD) with a cylindrical lens as an asymmetrical aberration corrector, instead of a freeform mirror. In the initial design process based on off-axial aberration analysis, we obtain an off-axis two-mirror system corrected for linear astigmatism and spherical aberration by adding a conic secondary mirror to an off-axis paraboloidal mirror. Thus, since the starting optical system for an HUD is corrected for dominant aberrations, it enables us to balance the residual asymmetrical aberrations with a simple optical surface such as a cylinder, not a complex freeform surface. From this design process, an optical system for an HUD having good performance is finally obtained. The size of the virtual image is 10 inches at 2 meters away from a combiner, and the area of the eye box is 130×50 mm2.

An Optical Cavity Design for an Infrared Gas Detector Using an Off-axis Parabolic Mirror

  • Jeong, You-Jin;Kang, Dong-Hwa;Seo, Jae-Yeong;Jo, Ye-Ji;Seo, Jin-Hee;Choi, Hwan-Young;Jung, Mee-Suk
    • Current Optics and Photonics
    • /
    • v.3 no.5
    • /
    • pp.374-381
    • /
    • 2019
  • This study examined a method for designing the optical cavity of a non-dispersive infrared gas detector. The infrared gas detector requires an optical cavity design to lengthen the ray path. However, the optical cavity with multiple reflecting surfaces has off-axis aberration due to the characteristics of the reflecting optical system. The rays were parallelized by using the off-axis parabolic mirror to easily increase the ray path and eliminate off-axis aberration so that the rays are admitted to the effective area of the infrared detector uniformly. A prototype of an infrared gas detector was produced with the designed optical cavity to confirm the performance.

Optical Design of an Off-axis Five-mirror-anastigmatic Telescope for Near Infrared Remote Sensing

  • Li, Xing Long;Xu, Min;Pei, Yun Tian
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.343-348
    • /
    • 2012
  • This paper described an off-axis five-mirror-anastigmatic telescope. It is composed of three aspheric surfaces and one spherical surface while the third mirror and fifth mirror have the same parameters at the same place. This configuration is useful for having wide field of view. The strip full field of view for the near infrared telescope is $20^{\circ}{\times}0.2^{\circ}$. The entrance pupil is located in front of the first mirror. There is an intermediate image between the second mirror and the third mirror. The entrance pupil diameter is 100 mm and the effective focal length is 250 mm. The spectral range is $0.85-1.75{\mu}m$. The pixel pitch is $15{\mu}m$. The image quality is near the diffraction limit. Some methods were used to restrain the stray light such as a field stop near the intermediate image, the baffle, the narrow-band pass filter and a stop in front of the focal plane.

Prototype Development for the GMT FSM Secondary - Off-axis Aspheric Mirror Fabrication -

  • Kim, Young-Soo;Kim, Jihun;Song, Je Heon;Cho, Myung;Yang, Ho-Soon;Lee, Joohyung;Kim, Ho-Sang;Lee, Kyoung-Don;Ahn, Hyo-Sung;Park, Won Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.341-346
    • /
    • 2014
  • A prototype of the GMT FSM has been developed to acquire and to enhance the key technology - mirror fabrication and tip-tilt actuation. The ellipsoidal off-axis mirror has been designed, analyzed, and fabricated from light-weighting to grinding, polishing, and figuring of the mirror surface. The mirror was tested by using an interferometer together with CGHs, which revealed the surface error of 13.7 nm rms in the diameter of 1030 mm. The SCOTS test was employed to independently validate the test results. It measured the surface error to be 17.4 nm rms in the diameter of 1010 mm. Both tests show the optical surface of the FSMP mirror within the required value of 20 nm rms surface error.

Design and Manufacture of an Off-axis Aluminum Mirror for Visible-light Imaging

  • Zhang, Jizhen;Zhang, Xin;Tan, Shuanglong;Xie, Xiaolin
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.364-371
    • /
    • 2017
  • Compared to one made of glass, an aluminum mirror features light weight, compact design, low cost, and quick manufacturing. Reflective mirrors and supporting structures can be made from the same material, to improve the athermal performance of the system. With the rapid development of ultraprecise machining technologies, the field of applications for aluminum mirrors has been developed rapidly. However, most of them are rotationally symmetric in shape, and are used for infrared applications. In this paper, the design and manufacture of an off-axis aluminum mirror used for a three-mirror-anastigmat (TMA) optical system at visible wavelengths is presented. An optimized, lightweight design provides a weight reduction of more than 40%, while the surface deformation caused by earth's gravity can meet the required tolerance. The two pieces of an off-axis mirror can be diamond-turned simultaneously in one setup. The centrifugal deformation of the off-axis mirror during single-point diamond turning (SPDT) is simulated through the finite-element method (FEM). The techniques used to overcome centrifugal deformation are thoroughly described in this paper, and the surface error is reduced to about 1% of the original value. After post-polishing, the form error is $1/30{\lambda}$ RMS and the surface roughness is better than 5 nm Ra, which can meet the requirements for visible-light imaging.

PROTO-MODEL OF AN INFRARED WIDE-FIELD OFF-AXIS TELESCOPE

  • Kim, Sang-Hyuk;Pak, Soo-Jong;Chang, Seung-Hyuk;Kim, Geon-Hee;Yang, Sun-Choel;Kim, Myung-Sang;Lee, Sung-Ho;Lee, Han-Shin
    • Journal of The Korean Astronomical Society
    • /
    • v.43 no.5
    • /
    • pp.169-181
    • /
    • 2010
  • We develop a proto-model of an off-axis reflective telescope for infrared wide-field observations based on the design of Schwarzschild-Chang type telescope. With only two mirrors, this design achieves an entrance pupil diameter of 50 mm and an effective focal length of 100 mm. We can apply this design to a mid-infrared telescope with a field of view of $8^{\circ}{\times}8^{\circ}$. In spite of the substantial advantages of off-axis telescopes in the infrared compared to refractive or on-axis reflective telescopes, it is known to be difficult to align the mirrors in off-axis systems because of their asymmetric structures. Off-axis mirrors of our telescope are manufactured at the Korea Basic Science Institute (KBSI). We analyze the fabricated mirror surfaces by fitting polynomial functions to the measured data. We accomplish alignment of this two-mirror off-axis system using a ray tracing method. A simple imaging test is performed to compare a pinhole image with a simulated prediction.

Ultra Precision Machining Technique for Optical System Parts (초정밀 가공기를 활용한 광학계 부품 가공기술)

  • Yang, Sun-Choel;Kim, Sang-Hyuk;Huh, Myung-Sang;Chang, Ki-Soo;Park, Soon-Sub;Won, Jong-Ho;Kim, Geon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.13-19
    • /
    • 2012
  • Ultra Precision Machining Techniques, such as manufacturing Micro Lens Array(MLA), off-axis mirror, $F-{\theta}$ lens for laser printer, are achieved, based on technologies in consequence of development of modern high-precision machining mechanism. Above all, FTS(Fast Tool Servo) and STS(Slow Tool Servo) are more innovative technologies for reducing time and development costs. In this paper, it is described that MLA machining technique by FTS, off-axis mirror machining technique by STS, optics for observing space, and development of infrared aspheric lens for a thermal imaging microscope.

Optical System Design and Evaluation for an Augmented Reality Head-up Display Using Aberration and Parallax Analysis

  • Kim, Kum-Ho;Park, Sung-Chan
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.660-671
    • /
    • 2021
  • We present a novel optical system for an augmented reality head-up display (AR HUD) with two virtual images at different conjugates by employing a confocal off-axis two-mirror and introducing the horopter circle. For a far virtual image with large asymmetrical aberrations, we initially obtain an off-axis two-mirror system corrected for these aberrations and compensated for the down angle by configuring its parameters to satisfy the confocal and Scheimpflug conditions, respectively. In addition, this system is designed to reduce the biocular parallax by matching Petzval surface into the longitudinal horopter circle in a near virtual image. This design approach enables us to easily balance the residual aberrations and biocular parallax when configuring the optical system with two different conjugates, which results in an AR HUD available for near and far virtual images together.

IGRINS Mirror Mount Design for Three Off-Axis Collimators and One Slit-Viewer Fold Mirror

  • Rukdee, Surangkhana;Park, Chan;Kim, Kang-Min;Lee, Sung-Ho;Chun, Moo-Young;Yuk, In-Soo;Oh, Hee-Young;Jung, Hwa-Kyoung;Lee, Chung-Uk;Lee, Han-Shin;Rafal, Marc D.;Barnes, Stuart;Jaffe, Daniel T.
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.2
    • /
    • pp.233-244
    • /
    • 2012
  • The Korea Astronomy and Space Science Institute and the Department of Astronomy at the University of Texas at Austin are developing a near infrared wide-band high resolution spectrograph, immersion grating infrared spectrometer (IGRINS). The compact white-pupil design of the instrument optics uses seven cryogenic mirrors, including three aspherical off-axis collimators and four flat fold mirrors. In this study, we introduce the optomechanical mount designs of three off-axis collimating mirrors and one flat slit-viewer fold mirror. Two of the off-axis collimators are serving as H and K-band pupil transfer mirrors, and are designed as system alignment compensators in combination with the H2RG focal plane array detectors in each channel. For this reason, the mount designs include tip-tilt and parallel translation adjustment mechanisms to properly perform the precision alignment function. This means that the off-axis mirrors' optomechanical mount designs are among the most sensitive tasks in all IGRINS system hardware. The other flat fold mirror is designed within its very limitedly allowed work space. This slit-viewer fold mirror is mounted with its own version of the six-point kinematic optics mount. The design work consists of a computer-aided 3D modeling and finite element analysis (FEA) technique to optimize the structural stability and the thermal behavior of the mount models. From the structural and thermal FEA studies, we conclude that the four IGRINS mirror mounts are well designed to meet all optical stability tolerances and system thermal requirements.