• Title/Summary/Keyword: off Speed

Search Result 1,153, Processing Time 0.028 seconds

Modeling the clutch energy and clutch life of a heavy duty vehicle

  • Akkurt, Ismail;Anlas, Gunay;Bedir, Hasan
    • Advances in Automotive Engineering
    • /
    • v.1 no.1
    • /
    • pp.21-39
    • /
    • 2018
  • Clutch energy is the thermal energy dissipated on the clutch disc, and it reaches its highest level during drive-off as a result of the difference between the angular speeds of the flywheel and clutch disc, and the torque transmitted. The thermal energy dissipated effects the clutch life. This study presents a new drive-off and thermal model to calculate the clutch energy for a rear wheel driven heavy-duty vehicle and to analyze the effects of clutch energy on temperatures of clutch pressure plate, flywheel and clutch housing. Three different driver profiles are used, based on the release of the clutch pedal in modulation zone: i) the pedal travels with the same speed all the way, ii) the travel speed of the pedal increases, iii) the travel speed of the pedal decreases. Vehicle test is performed to check the accuracy of the model. When compared to a simpler model that is widely used in the literature to calculate the clutch energy, the model used in this study calculates the clutch energy and angular speed behaviors of flywheel and transmission input shaft in better agreement with experimental results. Clutch wear and total clutch life are also estimated using the mean specific friction power.

Studies on Drilling and Cutting Characteristics for Granite Rocks Using Waterjets (워터젯을 이용한 화강암 천공과 절삭 특성에 관한 연구)

  • Oh, Tae-Min;Hong, Eun-Soo;Cho, Gye-Chun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1338-1345
    • /
    • 2009
  • Although rock excavation is necessary for the effective utilization of urban space, most conventional rock excavation methods, including the blasting method, cause high noise and vibration. Meanwhile, if a high pressure waterjet system is applied to excavate underground spaces in urban areas, the public grievance can be reduced by low noise and vibration. In this study, an abrasive waterjet system is designed and developed to study the influence of various performance parameters such as jet pressure, nozzle traverse speed, stand-off distance, or abrasive feed rate on waterjet excavation performance in laboratory. Using the developed waterjet system, rock drilling characteristics are identified by measuring drilling depths as a function of the jet exposure time. The drilling depth linearly increases with increasing the jet exposure time(under 60sec). Rock cutting characteristics are also obtained with various jet pressures(1600~3200kg/$cm^2$) and nozzle traverse speeds(1.9~14.1mm/s): The cutting depth is nonlinearly related to the jet pressure and traverse speed. Indeed, the cutting depth increases with an increase in the jet pressure and a decrease in the nozzle traverse speed. This trend can be explained by energy transferring/loss mechanism.

  • PDF

A Study on the Optimization of Machining Process for Al6061 Using the AWJM (AWJM을 이용한 Al6061 절단조건 최적화에 관한 연구)

  • Lee, Jae-Kwang;Min, Byeong-Hyeon;Ye, Sang-Don;Jea, Wone-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.3
    • /
    • pp.65-70
    • /
    • 2006
  • The AWJM(Abrasive Water-jet Machining) technology is one of the cutting technologies, which can cut various materials with 2 or 3 times of the speed of sound. In this study, processing conditions such as jet-pressure, cutting speed, orifice diameter and stand-off distance, are used by following the design of experiments with 3 levels. Al6061 material which is normally applied on the field, is applied. Through the S/N ratio analysis with measured values, the optimization value of processing conditions to minimize the surface roughness and taper value is obtained. The order of significance is as follows; jet pressure, cutting speed, abrasive mixing ratio, orifice diameter and stand-off distance. RSM(Response Surface Method) is applied to find the optimal processing conditions to minimize both the surface roughness and the taper value by using jet pressure, cutting speed and abrasive mixing ratio.

  • PDF

The Kinematic Analysis of Driggs Motion in Horse Vaulting - a case study (도마에서 Driggs 기술의 운동학적 사례-분석)

  • Kim, Yoon-Ji
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.175-183
    • /
    • 2005
  • This study investigates the kinetic characteristics of the Driggs motion in horse vaulting by stages through the three-dimensional video analysis of YTY and TABARA who won a high score and a low score respectively from the Driggs motion in horse vaulting during the Daegu Universiade 2003, which involves putting one's hands on the horse vaulting rotating sideways, stretching and rotating backward in the air, and twisting 900 degrees, so as to help develop the techniques of Korean gymnastic athletes. From the analyses of the duration of body center, horizontality, vertical position and horizontality, vertical speed and angle factors for each of four phases from the contact of the board to the takeoff from the horse vaulting. I arrived at the following conclusions: 1. It was found that the motion of bending oneself forward while rapidly stretching the knee joint when taking off from the board increases the horizontal speed of body center and shortens the time of the first jump. 2. It was found that S1 who won a high score shortened the time of the contact and takeoff from the horse vaulting and enlarged the shoulder joint angle for full blocking motion. It was also found that horizontal speed decreased while vertical speed increased when you rapidly stretch the right elbow joint while taking off from the horse vaulting. 3. It was found that horizontal distance was shortened to increase the height and time of staying in the air during the second jump.

Reexamination and Derivation of Empirical Dynamic Model for a Hydraulic Bleed-Off Circuit (유압 블리드-오프 회로의 특성 재검토 및 실험적 동특성 모델링)

  • Jeong, Heon-Sul;Lee, Gwang-Heon;Kim, Hyeong-Ui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1552-1564
    • /
    • 2002
  • Meter-in, meter-out and bleed-off circuits are widely utilized in order to adjust the speed of a hydraulic actuator by using a flow control valve and in order to regulate the pressure of a hydraulic volume by using a simple on-off valve. In these circuits, a relief valve serves either to maintain constant system pressure or to protect the system from over-pressure loading. The relief valve of a bleed-off circuit is the second case frequently undergoing on-off action during operation. It makes the analysis of the pressure control characteristics of the circuit highly difficult. In this paper, steady-state flow rate, pressure, heat loss and efficiency of the three circuits are reexamined and basic experiments far obtaining the characteristics of a pump and relief valve are conducted. Finally, simple empirical first-order dynamic models of decreasing and increasing pressure were separately proposed and verified by comparison with experiment. As the result, the basis for the theoretical analysis of the pressure control characteristics of a bleed-off circuit using a simple on-off valve is established.

Performance Test of Double-Bumped Air Foil Bearings (이중범프 공기포일베어링의 성능시험)

  • Kim, Young-Cheol;Lee, Dong-Hyun;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.25 no.2
    • /
    • pp.108-113
    • /
    • 2009
  • This paper presents a experimental results for the performance evaluation of a double-bumped air foil bearing. The test results of a double-bumped AFB is compared with a single-bumped AFB at a heavily-loaded condition. The diameter of the test bearing is 50 mm, and the axial length is 50 mm. Nominal clearance of the single-bumped AFB is evaluated as $105{\mu}m$, and that of the double-bumped AFB is as $95{\mu}m$. The test of the AFBs are demonstrated at 3 test mode; the load variation mode, the speed variation mode, and start-stop mode. The single-bumped AFB demonstrated a upward load-carrying capacity of 95 N and a downward load-carrying capacity of 130 N at 20,000 rpm. The double-bumped AFB demonstrated a upward load-carrying capacity of 170 N and a downward load-carrying capacity of 170 N at 20,000 rpm. The single-bumped AFB demonstrated a downward lift-off speed of 16,300 rpm at 105 N. The double-bumped AFB demonstrated a downward lift-off speed of 15,400 rpm at 105 N. The start-stop test of the AFBs assure 5,000 cycle endurance life. The test results are compared with the theoretical calculation results. The test and theorectical results show thata double-bump air foil bearing provides a higher load-carrying capacity, stiffness and damping than a single-bump air foil bearing in a heavily-loaded condition.

Study on Wear of Journal Bearings during Start-up and Coast-down Cycles of a Motoring Engine - I. Theory and Analysis Procedure (모터링 엔진의 시동 사이클 및 시동 정지 사이클에서 저어널베어링의 마모 연구 − I. 이론 및 해석 절차)

  • Chun, Sang Myung
    • Tribology and Lubricants
    • /
    • v.31 no.3
    • /
    • pp.109-124
    • /
    • 2015
  • This paper presents a wear analysis procedure for the journal bearings on a stripped-down single-cylinder engine during start-up and coast-down by motoring. A journal bearing is in the mixed elastohydrodynamic (EHL) lubrication region when the shaft speed is less than the corresponding lift-off speed. Below the lift-off speed, a wear scar can form on bearing surfaces. In part 1 of this paper, we develop the appropriate formulations and the calculation procedure for the analysis. Specifically, we formulate an equation for modified film thickness in a journal bearing considering the additional wear volume. In order to obtain the modified specific wear rate induced by the modified Archard’s wear coefficient, we utilized the extended non-dimensional diagram for the specific wear rate, k, the fractional film defect coefficient, Ψ and the asperity load sharing factor, γ2. This asperity load sharing factor is newly calculated by setting the Zhao-Maietta-Chang (ZMC) asperity contact pressure equation coupled with the central film thickness equation derived by using the ZMC asperity contact model equal to the modified central contact pressure derived by using the central (or maximum) contact pressure at the dry rough line-contact configuration. We can use the procedure introduced in this paper to determine the lifetime (or longterm) linear wear in radial journal bearings that is a result of repeated stop-start cycles.

PI end-point control of the compliant robot manipulator (유연성을 갖는 로보트 매니퓰레이터의 PI end-point제어)

  • 정구진;배준경;김승록;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.200-205
    • /
    • 1989
  • The performance of conventional robot arms is inhibited by trade-off between speed and accuracy. Because these systems measure only joint angles, in spite of slow speed, they must rely on a stiff structure in order to attain positioning accuracy. Lightweight links would allow faster motion, but their flexibility would also produce positioning errors. This research is involved with the development and evaluation of an End-point Control System whose major goal is to compensate for link deflections and thus mitigate the speed versus accuracy conflict in conventional manipulator.

  • PDF

A Study on Joint Angle of Lower Extremity during Short Track Speed Skating (쇼트트랙 스피드 스케이트 운동시 하지 관절각 분석)

  • Park, Jung-Hoon;Lee, Hyo-Taek;Kim, Yong-Jae
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.25 no.3
    • /
    • pp.690-696
    • /
    • 2013
  • This study, which is conducted on two groups of skilled people and unskilled people, is purposed to analyze joint angle of lower extremity during short track speed skating in order to find out efficient body position and propose ideal training method. Short Track Speed Skating has a wide range of research areas, but their findings indicate a promising area for further research. Targeting 8 people who are skilled in short track speed skating and 8 people who are not skilled in it, this study analyzes three dimensional images using super-high speed camera to compare differences between these two groups of people. In this study, 6 sections of body positions including right foot push-off, right foot recovery, right foot basic position, left foot push-off, left foot recovery, and left foot basic position were analyzed using 8 super-high speed cameras of VICON. These body positions were analyzed in order to find out joint angles of the hip joint, the knee joint, and the ankle joint. In the section 4 of the inner and outer parts of the left hip angles showed significant difference, and most of the sections of knee joint angles also showed significant difference. In the section 1 and 2 of the plantar flexion, dorsiflexion of ankle joints showed significant difference(p<.001) It was found out that there were differences between groups of skilled people and unskilled people in terms of lower extremity's joint angles such as angles of the hip joint, the knee joint, and the ankle joint.

Traffic Volume and Vehicle Speed Calculation Method for type of Sensor Failure of Automatic Vehicle Classification Equipment (AVC 장비의 센서고장 상황에 따른 교통량·통행 속도 산출 방법)

  • Kim, Min-heon;Oh, Ju-sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.1059-1068
    • /
    • 2016
  • The current operation method for the AVC (Automatic Vehicle Classification) equipment does not generate vehicle speed, traffic volume and vehicle type information when part of the sensors has failed. Inefficiency of current methods would not use the collected data from the normal sensor. In this study was conducted research on the calculating method at the traffic volume and vehicle speed in the sensor failure AVC equipment. The failure situation of the sensor was classified into 4 types. Calculating the traffic volume and vehicle speed information for each type, and accuracy of these informations were analyzed. Analysis results, traffic volume was possible to calculate a highly accurate value (accuracy: 100%, 98%, 97%). In the case of speed, the accuracy of the calculated speed value reaches a level that can be accepted sufficiently (RMSE value is less than 16.8). So, using the methodology proposed in this study are expected to be able to increase the operational efficiency of the AVC equipment.