• Title/Summary/Keyword: of differential equations

Search Result 2,498, Processing Time 0.031 seconds

Finite Difference Nonlinear Analysis of Composite Plate Structures with Various Layer Sequences (다양한 적층 배열을 갖는 복합 신소재 판 구조물의 유한차분 비선형 해석)

  • Lee, Sang Bum;Lee, Sang Youl;Lee, Rae Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.159-168
    • /
    • 2005
  • This study carries out a finite difference nonlinear analysis of anisotropic advanced composite plate structures with various layer sequences. In the numerical analysis of various mechanical problems involving complex partial differential equations, the finite difference method (FDM) developed in this study has an advantage over the finite element method in its ability to avoid mesh generation and numerical integration. Many studies in FDM have been made on clamped or simple boundary conditions using merely an energy approach. These approaches cannot be satisfied, however, with pivotal points along the free boundary. Therefore, this study addresses the nonlinear problem of anisotropic plates by adopting a finite difference modeling elimination of pivotal difference points in the case of a free boundary condition. Complex nonlinear behaviors of composite plate structures for various parameters, especially for layer sequences, are analyzed using the proposed approach.

Critical Loads and Post-Buckling Behaviour of Simply Supported Tapered Columns (단순지지(單純支持) 변단면(變斷面) 기둥의 임계하중(臨界荷重) 및 후좌굴(後挫屈) 거동(擧動))

  • Lee, Byoung Koo;Oh, Sang Jin;Mo, Jeong Man
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.17-26
    • /
    • 1991
  • Numerical methods are developed to obtain the critical loads and to analyze the post-buckling behaviour of the linearly varying tapered columns. The non-dimensional differential equations governing the elastica of post buckled column are derived by third order and solved numerically using the Runge-Kutta method and Regula-Falsi method. Three kinds of cross-sectional shape with simply supported end constraint are applied in unmerical examples. As the numerical results, the equlibrium paths. the typical elastica of post buckled columns and the critical load vs. section ratio curves are presented in figures. Also, the effects of cross-sectional shape factor on critical loads and postbuckling behaviour are presented in tables.

  • PDF

Modified Agglomerated Film Model Applied to a Molten Carbonate Fuel Cell Cathode (실측자료를 이용한 Agglomerated Film Model의 용융탄산염 연료전지 산소전극 성능모사)

  • 임준혁;김태근
    • Journal of Environmental Science International
    • /
    • v.5 no.5
    • /
    • pp.593-603
    • /
    • 1996
  • A dual-porosity filmed agglomerate model for the porous cathode of the molten carbonate fuel has been investigated to predict the cell performance. A phenomenological treatment of molecular, kinetic and electrode parameters has been given. The major physical and chemical phenomena being modeled include mass transfer, ohmic losses and reaction kinetics at the electrode- electrolyte interface. The model predicts steady-state cell performance, given the above conditions that characterize the state of the electrode. Quasi-linearization and finite difference techniques are used to solve the coupled nonlinear differential equations. Also, the effective surface area of electrode pore was obtained by mercury porosimeter. The results of the investigation are presented in the form of plots of overpotential vs. current density with varied the electrode material, gas composition and mechanism. The predicted polarization curves are compared with the empirical data from 1 c$m^2$ cell. A fair correspondence is observed.

  • PDF

Numerical Analysis of Enzyme Kinetics for Undergraduate Education in Engineering (공학분야 학부교육용 효소반응속도식의 수치해석)

  • Kim, Jae-Seok;Kim, Jae-Yoon;Lee, Jae-Heung
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.2 no.1
    • /
    • pp.35-41
    • /
    • 2010
  • An enzyme-catalized reaction is usually characterized by a very large increase in the rate and high specificity. Kinetics of simple enzyme-catalized reactions are often referred to as Michelis-Menten kinetics. A chemical that interferes with an enzyme's activity is called inhibitor. There are two types of enzyme inhibitions (viz. reversible and irreversible). If an inhibitor attaches to the enzyme with weak bonds, such as hydrogen bonds, the inhibition is usually reversible. Many enzyme reactions are also inhibited reversibly by their corresponding products. The rate of substrate disappearance together with the rate of product formation may be written by nonlinear differential equations. In the present study, numerical analyses of simple enzyme kinetics and inhibited enzyme kinetics are reported for the purpose of undergraduate education in engineering.

  • PDF

A Study on Influence Line of Curved I-Girder Grid Bridge with Constant Cross Section (등단면 I-형 곡선 격자형교의 영향선에 관한 연구)

  • Chang, Byung Soon;Ryoo, Eun Yeol;Joo, Jae Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.501-513
    • /
    • 1997
  • The general behavior of curved girder including the warping effects is formulated by series of differential equations postulated by Vlasov. In order to determine the maximum shear force, the maximum bending moment, the maximum pure torsion, the maximum warping torsion, and the maximum bimoment for the curved girder grid bridges, it is important to find the location of live load applied to the curved girder grid bridges, so that the influence line can be estimated. In this paper, the influence line of shear force, bending moment, pure torsion, warping torsion, and bimoment due to unit vertical load and unit torsional moment for curved I-girder grid bridges are obtained by using the finite difference method.

  • PDF

Prediction of the turning and zig-zag maneuvering performance of a surface combatant with URANS

  • Duman, Suleyman;Bal, Sakir
    • Ocean Systems Engineering
    • /
    • v.7 no.4
    • /
    • pp.435-460
    • /
    • 2017
  • The main objective of this study is to investigate the turning and zig-zag maneuvering performance of the well-known naval surface combatant DTMB (David Taylor Model Basin) 5415 hull with URANS (Unsteady Reynolds-averaged Navier-Stokes) method. Numerical simulations of static drift tests have been performed by a commercial RANS solver based on a finite volume method (FVM) in an unsteady manner. The fluid flow is considered as 3-D, incompressible and fully turbulent. Hydrodynamic analyses have been carried out for a fixed Froude number 0.28. During the analyses, the free surface effects have been taken into account using VOF (Volume of Fluid) method and the hull is considered as fixed. First, the code has been validated with the available experimental data in literature. After validation, static drift, static rudder and drift and rudder tests have been simulated. The forces and moments acting on the hull have been computed with URANS approach. Numerical results have been applied to determine the hydrodynamic maneuvering coefficients, such as, velocity terms and rudder terms. The acceleration, angular velocity and cross-coupled terms have been taken from the available experimental data. A computer program has been developed to apply a fast maneuvering simulation technique. Abkowitz's non-linear mathematical model has been used to calculate the forces and moment acting on the hull during the maneuvering motion. Euler method on the other hand has been applied to solve the simultaneous differential equations. Turning and zig-zag maneuvering simulations have been carried out and the maneuvering characteristics have been determined and the numerical simulation results have been compared with the available data in literature. In addition, viscous effects have been investigated using Eulerian approach for several static drift cases.

Development of a Three-Dimensional Wind Field Model using the Principle of Variational Method (변분법 원리를 이용한 3차원 바람장 모델 개발)

  • Suh, Kyung-Suk;Kim, Eun-Han;Whang, Won-Tae;Han, Moon-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.2
    • /
    • pp.97-108
    • /
    • 2003
  • A three-dimensional wind field model based on the variational technique has been developed for estimating the overall wind patterns over a complex terrain. The three-dimensional elliptic partial differential equations on Cartesian and terrain-following coordinates have been established to obtain the Lagrangian multiplier and the adjusted wind velocity. The simulations were performed to evaluate the variations of the velocity vectors on the hemisphere, half-cylinder, and saddle type obstacles. Also, the wind field model in the terrain-following coordinate has been applied for evaluating the characteristics of wind patterns according to the variations of Gauss precision moduli on the hemispheric topography. The results showed that the horizontal and vertical wind components were strongly governed by the selection of the values of Gauss precision moduli.

An analytic solution for the stirling engines with saw-toothed piston motions in adiabatic cylinders (단열실린더내에서 톱날파형 피스톤운동을 하는 스터링기관에 대한 해석적인 해)

  • 유호선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1197-1205
    • /
    • 1988
  • An analytical method to predict qualitative performance characteristics of the Stirling Engines in the preliminary design stages is investigated. Both the expansion and the compression cylinder are treated as adiabatic and piston motions are approximated as saw-toothed waves. Basic equations which were originally proposed by Finkelstein consist of mass conservation and energy balances for each adiabatic cylinder. The approximation on piston motions and physical conditions make it possible to divide an engine cycle into four fundamental processes. In each process, first, pressure can be expressed as a function of the crank angle by solving a nonlinear first order ordinary differential equation and other thermodynamic variables are determined in turn. Application of the cyclic steady condition to the whole processes can complete a cycle. Also, further analysis results in analytic expressions for cyclic work and heat transfer in terms of the engine parameters and thermodynamic variables at boundary points. The results are expected useful as a quick reference for the engine performances. Finally, the present method can be applied to the other adiabatic analyses on the Stirling Engines with piece wise linear piston motions, if mass variations are predictable.

A Simple Calculational Method by using Modified Von Mises Transformation applied to the Coaxial Turbulent Jet Mixing (유동함수를 이용한 난류제트혼합유동 계산에 관한 연구)

  • Choi Dong-Whan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.97-104
    • /
    • 2005
  • A simple but efficient grid generation technique by using the modified compressible form of stream function has been formulated. Transformation of a physical plane to a streamline plane, the Von Mises Transformation, has been widely used to solve the differential equations governing flow phenomena, however, limitation arises in low velocity region of boundary layer, mixing layer and wake region where the relatively large grid spacing is inevitable. Modified Von Mises Transformation with simple mathematical adjustment for the stream function is suggested and applied to solve the confined coaxial turbulent jet mixing with simple $\kappa-\epsilon$ turbulence model. Comparison with several experimental data of axial mean velocity, turbulent kinetic energy, and Reynolds shear stress distribution shows quite good agreement in the mixing layer except in the centerline where the turbulent kinetic energy distributions were somewhat under estimated. This formulation is strongly suggested to be utilized specially for free turbulent mixing layers in axisymmetric flow conditions such as the investigation of mixing behavior, jet noise production and reduction for Turbofan engines.

PRECISE ORBIT PROPAGATION OF GEOSTATIONARY SATELLITE USING COWELL'S METHOD (코웰방법을 이용한 정지위성의 정밀궤도예측)

  • 윤재철;최규홍;김은규
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.136-141
    • /
    • 1997
  • To calculate the position and velocity of the artificial satellite precisely, one has to build a mathematical model concerning the perturbations by understanding and analysing the space environment correctly and then quantifying. Due to these space environment model, the total acceleration of the artificial satellite can be expressed as the 2nd order differential equation and we build an orbit propagation algorithm by integrating twice this equation by using the Cowell's method which gives the position and velocity of the artificial satellite at any given time. Perturbations important for the orbits of geostationary spacecraft are the Earth's gravitational potential, the gravitational influences of the sun and moon, and the solar radiation pressure. For precise orbit propagation in Cowell' method, 40 x 40 spherical harmonic coefficients can be applied and the JPL DE403 ephemeris files were used to generate the range from earth to sun and moon and 8th order Runge-Kutta single step method with variable step-size control is used to integrate the the orbit propagation equations.

  • PDF