• Title/Summary/Keyword: odor removal

Search Result 233, Processing Time 0.027 seconds

Selection of Biofilter Support for Removing MEK (MEK 제거를 위한 바이오필터용 담체의 선택)

  • Jeong Gwi-Taek;Lee Gwang-Yeon;Lee Kyoung-Min;Sunwoo Chang-Shin;Lee Woo-Tae;Jung Seong-Ho;Cha Jin-Myoung;Jang Young-Seon;Park Don-Hee
    • KSBB Journal
    • /
    • v.21 no.1 s.96
    • /
    • pp.34-41
    • /
    • 2006
  • The aim of this study is the development of biological removal process of methyl ethyl ketone (MEK) in odor gas, which is generated from the waste food recycling process. To develop the removal process of odor gas, MEK, the selection of proper biofilter support was carried out. When the biofilter equipment was passed by synthetic odor gas composed of 250 ppm of MEK, the maximum removal was achieved to $586.6g-MEK/m^3\;hr$ for polypropylene fibril as support. Under the same experimental conditions, the maximum removal in polyurethane support was obtained to $359.7 g-MEK/m^3\;hr$. Finally, the maximum removal in volcanic stone support was $56.2g-MEK/m^3\;hr$.

Disposal of Animal Waste-The Magnitude of the Problem in Asia and Australasia - Review -

  • Sheen, S.Y.;Hong, C.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.4
    • /
    • pp.597-603
    • /
    • 1999
  • Even though the development of livestock industry in Asia and Australasia has brought the economic growth and thus elevated the living standard in these areas, it has also brought the pollution caused by the increasing amount of animal wastes. Among them, Japan probably is the first country that suffered from the animal waste pollution as early as in 1970s. Nowadays, the animal waste pollution has been a common problem for almost every countries in this region. To solve it, different measures and regulations have been implemented in many countries. In this paper, different methods for animal waste disposal are discussed, including: manure-bed animal housing, composting, anaerobic treatment, odor control, utilization of biogas, aerobic treatment, three-step process, N and P removal, land application, cultivation of algae, anaerobic treatment of dead animals. It is hoped that an animal industry without pollution can be achieved in the future.

Adsorption Removal of Odor Compounds (IBMP, IPMP) (이.취미물질(IBMP, IPMP)의 흡착제거)

  • 김은호;손희정;김영웅
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.2
    • /
    • pp.18-24
    • /
    • 1999
  • The purpose of this study was carried out to estimate removal possibility of IBMP and IPMP causing odor in raw water. As a result of Freundlich isotherm. IBMP was superior to IPMP in adsorptive capacity. Adsorptive capacities of activated carbon were found to be in order of Lignite, Coconut shell, and Charcoal. These were well fitted with Freundlich isotherm. According to adsorption breakthrough tests for Lignite GAC, breakthrough time of IPMP and IBMP were 5.7hr and 5.5hr, respectively. Because adsorptive capacities of target material were very different with pore size distribution, it seemed that Lignite and Coconut shell based activated carbons were recommended in order to remove door compounds.

  • PDF

Analysis of the Survey on the Consumer's Knowledge and Laundry Habits to Microorganisms Living in Clothing (의류 중의 미생물에 대한 소비자의 지식과 세탁습관 실태조사 분석)

  • 최해운;정찬진;박명자
    • The Research Journal of the Costume Culture
    • /
    • v.10 no.6
    • /
    • pp.781-792
    • /
    • 2002
  • Microorganisms living in clothing cause damage to fabric as well as unhygienic conditions with unpleasant odor fur wearers. Removal or growth of microorganisms are affected by the conditions during washing and storage. The purpose of this research was to study the consumer's knowledge and habits in laundering with respect to microorganisms in clothing. For survey method, questionnaires were administered to 580 housewives, age of 20∼60s living in Seoul. Employing 479 respondents, the data were analyzed by using descriptive statistics. The results are as follows: The level of knowledge about microorganisms of clothing was high in general, but wasn't expert level. Many people had experienced damages of textiles, clothing and unpleasant odor due to microorganisms. Fabric softeners and bleaches were rarely used for disinfection but usually used for antistatic, whitening or removal of stains. There was no relationship between laundering habits, the knowledge of microorganism, and experience of clothing damage by microorganism.

  • PDF

Removal Efficiency of the Deodorization Equipment and Characteristics of Malodor during the Process in Co-treatment of Sewage and Food Waste of Su-young Wastewater Treatment Plant in Busan (부산수영하수처리장 하수와 음식물쓰레기 병합처리 시 공정별 악취특성 및 후처리시설 효율평가)

  • Lee, Hyung-Don;Kang, Dae-Jong;Lee, Min-Ho;Kang, Dong-Hyo;Oh, Kwang-Joong
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.379-389
    • /
    • 2012
  • Environmental issues are being paid more attention due to income growth, urban overcrowding, and population growth in Korea. Among the various environmental problems, odor damage is the one of the serious factors. To take example for food waste combination treatment in Su-young wastewater treatment plant in Busan, many complaints occurred because this plant locate around residential areas. The purpose of this work is not only to analyze odorous elements and their contributions but also to evaluate odor quotient (OQ), sum of odor quotient (SOQ), and treatment efficiency of bio-filter. The results of dilution sensory test of complex odor, grinder, leachate, hopper indicated higher order complex odors happen in July and August. The main odorous elements consisted of hydrogen sulfide, ammonia, methly mercaptan and acetaldehyde, which were analyzed by instrumental detection method, and methyl mercaptan was exceeded over 3,571 times of threshold. In addition, result of contribution of odor was methyl mercaptan (49.95 to 59.08%), hydrogen sulfide (20.43 to 29.27%), trimethylamine (8.82 to 13.42%) and acetaldehyde (9.17 to 11.35%). Other facilities were compared with the contribution of the odor using OQ and SOQ during the process. Sulfur compounds, acetaldehyde, and trimethylamine are high contribution of odor using OQ as well as odor intensity of grinding process is highest. As a result, sulfur compounds (e.g., methyl mercaptan and hydrogen sulfide) are highest for OQ and SOQ of grinding process is highest as 7,067. The removal efficiency of deodorization equipment was more than 90.00% in ammonia and amines, but the average efficiency of sulfur compounds was 53.51%. Thus, this facility is more higher contribution of acetaldehyde and trimethylamine than other treatment facilities. And food waste treatment in environmental area needs to consider appropriate capacity and refers to other bio-filter operating conditions.

Application of DBD Plasma Catalysis Hybrid Process to remove Organic Acids in Odors (악취물질인 유기산 제거를 위한 DBD 플라즈마 촉매 복합공정의 적용)

  • Hong, Eun-Gi;Suh, Jeong-Min;Choi, Kum-Chan
    • Journal of Environmental Science International
    • /
    • v.23 no.9
    • /
    • pp.1627-1634
    • /
    • 2014
  • Odor control technology include absorption, adsorption, incineration and biological treatments. But, most of processes have some problems such as secondary organic acids discharge at the final odor treatment facility. In order to solve the problems for effective treatment of organic acids in odor, it is necessary to develop a new type advanced odor control technology. Some of the technology are plasma only process and plasma hybrid process as key process of the advanced technology. In this study, odor removal performance was compared DBD(Dielectric Barrier Discharge)plasma process with PCHP(plasma catalysis hybrid process) by gaseous ammonia, formaldehyde and acetic acid. Plasma only process by acetic acid obtained higher treatment efficiency above 90%, and PCHP reached its efficiency up to 96%. Acetic acid is relatively easy pollutant to control its concentration other than sulfur and nitrogen odor compounds, because it has tendency to react with water quickly. To test of the performance of DBD plasma process by applied voltage, the tests were conducted to find the dependence of experimental conditions of the applied voltage at 13 kV and 15 kV separately. With an applied voltage at 15 kV, the treatment efficiency was achieved to more higher than 13 kV from 83% to 99% on ammonia, formaldehyde and acetic acid. It seems to the odor treatment efficiency depends on the applied voltage, temperature, humidity and chemical bonding of odors.

Performance Evaluation of Manhole Filter to Remove Odor Inside Sewage Pipe -Focused on Removal of Hydrogen sulfide- (하수관거 악취 제거를 위한 맨홀필터 악취제거장치 성능 평가 - 황화수소 제거를 중심으로 -)

  • Kim, Choong-Gon;Lee, Jang-Hown
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.4
    • /
    • pp.45-51
    • /
    • 2018
  • The objective of this study is to evaluate the applicability of a manhole-filter odor eliminator that is installed on a manhole to remove hydrogen sulfide ($H_2S$) contained in the sewage of urban streets; $H_2S$ is the very cause of offensive odor from such sewage. An analysis of the capability of impregnated activated carbon, which is contained in the manhole filter, to adsorb hydrogen sulfide shows that some 99.8% of hydrogen sulfide can be removed. A performance evaluation of the manhole-filter odor eliminator, which was made on Manhole Section 4 known as the representative malodorous manhole section of Seoul, Korea, indicates that more than 97% of hydrogen sulfide ($H_2S$), one of typical malodor-generating substances, can be eliminated. The results and findings of the study as described above suggest that the applicability of the manhole-filter odor eliminator to eliminate offensive odor generated from sewer manholes is satisfactory.

Performance Evaluation of Powdered Activated Carbon (PAC) Contactor for the Removal of Organics and Taste and Odor (분말활성탄 접촉조의 맛·냄새 및 유기물 제거 효율 평가)

  • Bae, Byung-Uk;Lim, Mun-Gu
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.585-589
    • /
    • 2010
  • In order to evaluate the performance of a powdered activated carbon (PAC) contactor, two water treatment plants (WTP) were selected as target sites. The result of tracer tests showed that the plug flow portion of a bisymmetry-type contactor (H WTP) was more than 70%. A maze-type contactor (C WTP) also had more than 70% of plug flow portion after intra-basin baffles were installed. According to the operating data of the target WTPs, there was no clear evidence that the addition of PAC contributed to the removal of organics. However, the results of jar tests, conducted with the raw water taken from the H WTP, proved that PAC could remove dissolved organic carbon (DOC) to some extent when the proper velocity gradient was maintained. It was estimated that the production rate, defined as the ratio of the operating flowrate to the design flowrate, of the C and H WTPs was only 27 and 50%, respectively. Because of these lower production rates, the mixing intensity in the contactor was much less than the designed value and, finally, the performance of the PAC contactor was much lower than what was expected.

Evaluation on the Locations of Powdered Activated Carbon Addition for Improvement of Taste and Odor Removal in Drinking Water Supplies (상수원수 내 이취미 제거효율 향상을 위한 분말활성탄 투입지점의 평가)

  • Kim, Young-Il;Lee, Sang-Jin;Bae, Byung-Uk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.3
    • /
    • pp.341-348
    • /
    • 2007
  • The efficiency of powdered activated carbon (PAC) for removing taste and odor (T&O) in drinking water supplies is dependent on the contact time, quality of mixing, and the presence of competing compounds. All of these are strongly influenced by the stage in the treatment process at which the PAC is added. In conventional water treatment plants (WTPs), PAC is commonly added into the rapid mixing basin where chemicals such as coagulants, alkaline chemicals, and chlorine, are simultaneously applied. In order to prevent interference between PAC and other water treatment chemicals, alternative locations for addition of PAC, such as at transmission pipe in the water intake tower or into a separated PAC contactor, were investigated. Whatever the location, addition of PAC apart from other water treatment chemicals was more effective for geosmin removal than simultaneous addition. Among several combinations, the sequence 'chlorine-PAC-coagulant' produced the best result with respect to geosmin removal efficiency. Consequently, when PAC has to be applied to cope with T&O problems in conventional WTPs, it is very important to prevent interference with other water treatment chemicals, such as chlorine and coagulant. Adequate contact time should also be given for adsorption of the T&O compounds onto the PAC. To satisfy these conditions, installation of a separated PAC contactor would be the superior alternative if there is space available in the WTP. If necessary, PAC could be added at transmission pipe in the water intake tower and still provide some benefit for T&O treatment.