• Title/Summary/Keyword: odontoblast

Search Result 73, Processing Time 0.026 seconds

MAPK Signal Pathways in Regulation of Odontoblastic Differentiation by Induction of HO-1 in Human Dental Pulp Cells (MAPK 경로를 통한 HO-1과 분화 표지자 발현)

  • Kim, Sun-Ju
    • Journal of dental hygiene science
    • /
    • v.10 no.4
    • /
    • pp.227-231
    • /
    • 2010
  • The purpose of this study was to examine the MAPK signaling pathways involved in regulation of HO-1 and the odontoblast differentiation markers during the odontoblastic differentiation for HDPCs. We evaluated cell growth by MTT assay and differentiation marker mRNA expression by RT-PCR. When the cells were treated with p38 inhibitor (SB203580, $10{\mu}M$), JNK inhibitor (SP600125, $10{\mu}M$), and ERK inhibitor (PD98059, $20{\mu}M$) for 7 days, cell growth and expression of HO-1 and differentiation makers were significantly decreased in HDPCs. Our results suggest that odontoblastic differentiation is positively regulated by HO-1 induction in HDPCs via ERK, JNK, and p38 signaling pathways. Thus, pharmacological HO-1 induction might represent a potent therapeutic approach for pulp capping and the regeneration of HDPCs.

Tooth dentin regeneration and its clinical application (치아 상아질의 재생과 그 임상적 활용)

  • Bae, Hyun Sook;Park, Joo-Cheol
    • The Journal of the Korean dental association
    • /
    • v.55 no.5
    • /
    • pp.352-357
    • /
    • 2017
  • Teeth are made up of three hard tissues, enamel, dentin, and cementum. The dental pulp is the only non-mineralized connective tooth tissue that is surrounded by dentin. The dentin-pulp complex is able to respond to injury by producing hard tissue deposition. However, dentin is considered one of the most difficult tissues to regenerate because of its unique anatomic and physiologic nature. Recently, advances in understanding the applicability of bio-active dentin regenerating proteins are emerging with the development of biological-based therapies using bio-active materials. Dentin defects were regenerated by the deposition of tubular physiologic dentin after application of the bio-active protein in a beagle dog model. Therefore, the bio-active protein may be able to serve as a novel dentin regenerating material and improve symptoms of dentin hypersensitivity.

  • PDF

A PHASE CONTRAST MICROSCOPIC STUDY OF THE EFFECT OF PHENOL ON UNFIXED ODONTOBLAST (PHENOL이 미고정(未固定) 조상아세포(造象牙細胞)에 미치는 영향(影響)에 관(關)한 위상차현미경적(位相差顯微鏡的) 연구(硏究))

  • Hong, Kyoung-Taik
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.17 no.1
    • /
    • pp.47-59
    • /
    • 1979
  • In order to study the morphologic changes of the unfixed odontoblasts suspended in phenol solution of several different concentrations, the author carried out the extraction of lower incisor of S-D strain rats to collect the odontoblasts, and the cells obtained were suspended immediately in saline solution. After observing the odontoblasts in fresh state, the saline solution was substituted with 0.125%, 0.25% 0.5%, 1% and 2% diluted phenol solutions. The morphologic changes were examined with phase contrast microscope at intervals of 10, 30, and 60 minutes. The results were as follows: 1. In saline solution the odontoblast showed cytoplasmic swelling, slender cytoplasmic process, thick rim nuclear membrane with increased dark contrast, and prominent nucleoli and chromatin granules with lapse of time intervals. In accordance with time intervals, blisters appeared in the supranuclear zone and increased its size and moved outward of the cytoplasmic membrane resulting detachment from the cell membrane. The phase dark cytoplasmic granules were increased in its dark contrast and in its size. 2. In 0.125% and 0.25% phenol solution, the odontoblasts and its nucleus shrunk immeidately and its contrast of cellular components was increased. With the lapse of time, the phase-dark granules in cytoplasm were aggregated, and several blisters were formed in and out of the cells. The outline of cytoplasmic membrane was also obscured. 3. In 0.5% phenol solution, the necleus shrunk at once, but soon after it revealed karyolysis accompanying dark contrast of neclear components such as nuclear membrane, nucleoli, and chromatin granules. On the contrary, the cytoplasmic granules showed aggregation and increased dark contrast, small and large blisters were formed in and out of the odontblasts and the outline of cytoplasmic membrane became obscured. 4. In 1% phenol solution, it showed shrinkage of odontblasts and its nuclei with thick rim nuclear membrane, aggregation of chromatin granules and occasional karyorrhexis. The dark contrast of cytoplasmic granules was increased and aggregated each other. But the blister formation could not be found. 5. In 2% phenol solution, it showed the shrinkage of odontoblasts and pyknotic nuclei with increased dark contrast of nucleoli and chromatin granules. The number of cytoplasmic granules was decreased by aggregation. But the blister formation could not be found as in 1% phenol solution.

  • PDF

Interaction between odontoblast and bio-calcium phosphate cement reinforced with chitosan (치아모세포와 키토산으로 강화된 생체 적합 칼슘인산시멘트와의 상호작용)

  • Chun, Byung-Do;Kim, Sung-Won;Lee, Sung-Tak;Kim, Tae-Hoon;Lee, Jung-Han;Kim, Gyoo-Cheon;Kim, Yong-Deok;Kim, Uk-Kyu
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.5
    • /
    • pp.415-420
    • /
    • 2011
  • Purpose: Calcium phosphate cement (CPC) is one of many useful materials for restoring tooth defects, periodontium and maxillofacial area. Chitosan is a biodegradable material that has been shown to promote the growth and differentiation of osteoblasts in culture. This study examined the interaction between odontoblasts and bio-calcium phosphate cement reinforced with chitosan. Materials and Methods: $5{\times}10^3$ odontoblastic cells were seeded into each well. Various concentrations of bio-calcium phosphate cement reinforced with chitosan (10, 20, 50, 100, 200, 500 ${\mu}g$/ml, 1, 2, 4 mg/ml) were diluted and added to the wells. The well was incubated for 24 h, 48 h and 72 h. After incubation, the number of cells was assessed to determine the cell viability. A cytokinesis-block micronucleus assay and chromosomal aberration test were carried out to estimate the extent of chromosomal abnormalities. Microscopic photographs and RT-PCR were performed to examine the adhesion potential of bio-calcium phosphate cement reinforced with chitosan. Results: Bio-CPC-reinforced chitosan did not show significant cytotoxicity. The number of damaged chromosomes in the cells treated with Bio-CPC-reinforced chitosan was similar to that in the control cells. There was no significant increase in the number of chromosomal aberrations in the Bio-CPC reinforced chitosan exposed cells. Microscopic photographs and RT-PCR confirmed the adhesive potential of bio-CPC reinforced chitosan to odontoblasts. Conclusion: Bio-CPC-reinforced chitosan did not affect the odontoblastic cell viability, and had no significant cytotoxic effect. Bio-CPC-reinforced chitosan showed adhesive potential to odontoblasts. These results are expected form the basis of future studies on the effectiveness of dental restorative materials in Bio-CPC reinforced with chitosan.

Gene Expression of Supernumerary Dental Pulp Related to the Subculture Speed: A Pilot Study (계대 배양 속도가 다른 과잉치 치수유래 줄기세포 간 유전자 발현 특성)

  • Lee, Yookyung;Kim, Jongsoo;Shin, Jisun;Kim, Jongbin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.2
    • /
    • pp.219-225
    • /
    • 2019
  • The purpose of this study was to investigate the odontoblast gene expression related to the subculture speed of supernumerary dental pulp stem cells (sDPSCs). The stem cell is undifferentiated cells which has the ability to differentiate into various cells. Specific stimulation or environment induces cell differentiation, and these differentiation leads to bone or muscle formation. 20 sDPSCs were obtained from 20 children under aseptic condition. During the culture through the 10th passage, the third passage cells which showed short subculture period and 10th passage cells which showed long subculture period were earned. Each cell was divided into differentiated group and non-differentiated group. Quantitative real-time polychain reaction (q-RT-PCR) was performed for each group. The genes related to odontoblast differentiation, Alkaline Phosphatase (ALP), Osteocalcin (OCN), Osteonectin (ONT), Dentin sialophosphoprotein (DSPP) and Dentin matrix acidic phosphoprotein 1 (DMP-1), were measured. Differentiated cells showed more gene expression levels. Undifferentiated cells showed higher gene expression level in 10th passages but differentiated cells showed higher gene expression level in 3rd passages. Cells that showed faster subculture period showed relatively lower gene expression level except for OCN and DSPP.

Analysis of the morphological change and the expression of secretory leukocyte protease inhibitor (SLPI) in various cell lines after lipopolysaccharide stimulation

  • Choi, Baik-Dong;Choi, Jeong-Yoon;Jeong, Soon-Jeong;Park, Joo-Cheol;Kim, Heung-Joong;Bae, Chun-Sik;Lim, Do-Seon;Jeong, Moon-Jin
    • 한국전자현미경학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.127-129
    • /
    • 2005
  • Bacterial lipopolysaccharide(LPS) is can stimulate the most LPS-responsive cells in the mammalian host. The macrophage response to LPS can protect the host from infection but high levels, contribute to systemic inflammatory response syndrome and destruction of host itself, The previously study, secretory leukocyte pretense inhibitor (SLPI) was known LPS-induced product of macrophage and had the function that antagonizes their LPS-induced activation of pro-inflammation signaling factors. Purpose of this study was to identify the expression of SLPI involving the infection in various cell lines including odontoblast cell line. Therefore, we conducted in vitro researches, which treated the LPS to the MDPC-23, and compared to NIH3T3, RAW264.7. To investigate the expressionof SLPI in mRNA level, the methods was used RT-PCR and western blotting for protein expression of SLPI. Moreover, we performed the scanning electron microscopic (SEM) observation for the morphological change. This work was supported by Korea Science and Engineering Foundation.

  • PDF

Analysis of gene expression during odontogenic differentiation of cultured human dental pulp cells

  • Seo, Min-Seock;Hwang, Kyung-Gyun;Kim, Hyong-Bum;Baek, Seung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.3
    • /
    • pp.142-148
    • /
    • 2012
  • Objectives: We analyzed gene-expression profiles after 14 day odontogenic induction of human dental pulp cells (DPCs) using a DNA microarray and sought candidate genes possibly associated with mineralization. Materials and Methods: Induced human dental pulp cells were obtained by culturing DPCs in odontogenic induction medium (OM) for 14 day. Cells exposed to normal culture medium were used as controls. Total RNA was extracted from cells and analyzed by microarray analysis and the key results were confirmed selectively by reverse-transcriptase polymerase chain reaction (RT-PCR). We also performed a gene set enrichment analysis (GSEA) of the microarray data. Results: Six hundred and five genes among the 47,320 probes on the BeadChip differed by a factor of more than two-fold in the induced cells. Of these, 217 genes were upregulated, and 388 were down-regulated. GSEA revealed that in the induced cells, genes implicated in Apoptosis and Signaling by wingless MMTV integration (Wnt) were significantly upregulated. Conclusions: Genes implicated in Apoptosis and Signaling by Wnt are highly connected to the differentiation of dental pulp cells into odontoblast.

A Trial of Screening of Genes Involved in Odontoblasts Differentiation from Human Dental Pulp Stem Cells

  • Park, Yoon-Kyu;Kim, Hyun-Jin
    • International Journal of Oral Biology
    • /
    • v.37 no.4
    • /
    • pp.167-173
    • /
    • 2012
  • This study investigated the genes involved in the differentiation of odontoblasts derived from human dental pulp stem cells (hDPSCs). hDPSCs isolated from human tooth pulp were validated by fluorescence activated cell sorting (FACS). After odontogenic induction, hDPSCs were analyzed investigated by Alizaline red-S staining, ALP assay, ALP staining and RT-PCR. Differential display-polymerase chain reaction (DD-PCR) was performed to screen differentially expressed genes involved in the differentiation of hDPSCs. By FACS analysis, the stem cell markers CD24 and CD44 were found to be highly expressed in hDPSCs. When hDPSCs were treated with agents such as ${\beta}$-glycerophosphate (${\beta}$-GP) and ascorbic acid (AA), nodule formation was exhibited within six weeks. The ALP activity of hDPSCs was found to elevate over time, with a detectable up-regulation at 14 days after odontogenic induction. RT-PCR analysis revealed that dentin sialophosphoprotein (DSPP) and osteocalcin (OC) expression had increased in a time-dependent manner in the induction culture. Through the use of DD-PCR, several genes were differentially detected following the odontogenic induction. These results suggest that these genes may possibly be linked to a variety of cellular process during odontogenesis. Furthermore, the characterization of these regulated genes during odontogenic induction will likely provide valuable new insights into the functions of odontoblasts.

EFFECT OF COBALT-60 IRRADIATION ON THE DEVELOPING TOOTH GERM OF RAT (Cobalt-60이 발육치배조직에 미치는 영향에 관한 실험적 연구)

  • Lee Ki Sik
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.6 no.1
    • /
    • pp.33-38
    • /
    • 1976
  • The author observed the effects of the cobalt-60 irradiation on the amelogenesis and dentinogenesis of the albino rat fetuses by means of histological and histochemical methods. Females in oestrus were mated overnight and examined the next morning for evidence of copulation. The lower left abdomen of mothers were exposed to cobalt-60 irradiation on the 10th day of gestation, l00R 200R and 300R respectively. The fetuses were removed from the mothers on the 18th day of gestation. The employed histochemical methods were PAS reaction, colloidal iron reaction, aldehyde fuchsin stain, α-amino acid reaction, -SH radical reaction and methyl- green pyronin stain. The results were as follows; 1. The group irradiated by l00R made no histological differences in comparison with the control group. 2. Increasing the irradiation to 200R, abnormal dentin formation occured, and resulted in enamel hypoplasia and in atrophy and necrosis of odontoblasts. In dentinal papilla, the dilation and the degeneration of the blood vessels, excessive reticular atrophy and osteodentin were revealed. 3. With the more irradiation (200R-300R), the positive material of PAS, α-amino acid and aldehyde fuchsin tended to decrease in the ameloblast and the odontoblast. No significant changes appeared in DNA, the stainability of methylgreen pyronin.

  • PDF

FLOW OF DENTINAL FLUID THROUGH CAT DENTINAL TUBULES IN VIVO (IN VIVO에서 고양이 상아세관을 통한 상아세관액의 흐름)

  • Son, Ho-Hyun;Park, Soo-Joung;Lee, Kwang-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.342-350
    • /
    • 1995
  • To determine the factors which affect the flow of dentinal fluid through cat dentinal tubules in vivo, the flow of fluid was measured by observing the movement of the fat droplets of dilute milk in a glass capillary with a microscope connected to the monitor. After measuring the exposed area of dentin, hydraulic conductances of dentin were calculated. The mean pressure which stoped the outward flow of dentinal fluid was 9.5mmHg. The hydraulic conductance of dentin under the condition of pulp exposed was increased by 21 % from that under the condition of dentin exposed. Under the conditions of pulp cut and pulp removed, the hydraulic conductances of dentin were increased by 22 % and 31 % respectively from that under the condition of dentin exposed. These results show that the direction and rate of dentinal fluid flow in cat dentin is affected mainly by the hydrostatic pressure of interstitial fluid of pulp tissue in the state of low compliance. Both of the osmotic effect produced by the protein constituents of interstitial fluid across the odontoblast tell layer and the change of interstitial fluid pressure produced by the state of the microcirculation of the pulp also affect the direction and rate of dentinal fluid in some degree.

  • PDF