• Title/Summary/Keyword: octave

Search Result 216, Processing Time 0.026 seconds

Autonomous evaluation of ambient vibration of underground spaces induced by adjacent subway trains using high-sensitivity wireless smart sensors

  • Sun, Ke;Zhang, Wei;Ding, Huaping;Kim, Robin E.;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • The operation of subway trains induces secondary structure-borne vibrations in the nearby underground spaces. The vibration, along with the associated noise, can cause annoyance and adverse physical, physiological, and psychological effects on humans in dense urban environments. Traditional tethered instruments restrict the rapid measurement and assessment on such vibration effect. This paper presents a novel approach for Wireless Smart Sensor (WSS)-based autonomous evaluation system for the subway train-induced vibrations. The system was implemented on a MEMSIC's Imote2 platform, using a SHM-H high-sensitivity accelerometer board stacked on top. A new embedded application VibrationLevelCalculation, which determines the International Organization for Standardization defined weighted acceleration level, was added into the Illinois Structural Health Monitoring Project Service Toolsuite. The system was verified in a large underground space, where a nearby subway station is a good source of ground excitation caused by the running subway trains. Using an on-board processor, each sensor calculated the distribution of vibration levels within the testing zone, and sent the distribution of vibration level by radio to display it on the central server. Also, the raw time-histories and frequency spectrum were retrieved from the WSS leaf nodes. Subsequently, spectral vibration levels in the one-third octave band, characterizing the vibrating influence of different frequency components on human bodies, was also calculated from each sensor node. Experimental validation demonstrates that the proposed system is efficient for autonomously evaluating the subway train-induced ambient vibration of underground spaces, and the system holds the potential of greatly reducing the laboring of dynamic field testing.

Study on Sound Production and Phonotaxis of Some Fishes and Crabs (몇가지 어류 및 갑각류의 발음과 주음성에 관한 연구)

  • 김상한
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.14 no.1
    • /
    • pp.15-36
    • /
    • 1978
  • Underwater sounds of some fishes and crabs were analyzed in the laboratory. The behavioral responses to the playback sounds of their feeding and croaking sound were investigated. The samples used in the experiment were as follows: Nibea albiflora, seriola quinqueradiata, Navodon modestus, Fugu xanthopterus, chrysophrys major, Scylla serrata, Telmessus acutidens, Charybdis japonica, and Portunus trituberculatus. The feeding and croaking sounds of the samples were recorded by a tape recorder through a hydrophone in an anechoic aquarium. The sound intensity level was measured by means of a sound level meter at an anechoic chamber. The frequency, intensity and wave form of various sounds were analyzed with an analyzing system consisting of a 1/3 octave filter set, a high speed level recorder, an amplifier, an octave band analyzer and an oscilloscope. The most successful recording was edited into a sequence of sound track which repeats sound emitting for 5 to 7 seconds after pausing for 5 to 7 seconds. The sequence was then reproduced into an anechoic aquarium through the under water speaker. The experimental anechoic aquarium used for the sample fishes was divided into the four sections with any three screens selected from 40$\times$40mm, 60$\times$60mm, 80$\times$80mm and 100$\times$100mm mushes according to the species of the fishes, besides that for crabs were not sectioned. The results of the investigation are as follows: 1. Of the feeding sound of fish, the frequency of wave from of the sound produced by Nibea albiflora and seriola quinqucradiata was 125~250Hz, that by Navodon modestus 63~125Hz, and that by Fugu xanthopterus 400~500Hz. The pressure level of the feeding sound produced by Nibea albiflora and Seriola quinqueradiata was 56~62db, that by Navodon modestus 57~59db, and that by Fugu xanthopterus 60~64db. 2. Of the croaking sound of Nibea albiflora, the frequency of the sound was 125~250Hz almost equivalent to that of feeding sound, and the pressure level was 62~63db, slightly higher than that of feeding sound. 3. Of the croaking sounds of crabs, the frequency of the sound produced by scylla serrata was 125~250Hz, that by Charybdis japonica and Telmessus acutidens 500~1,000Hz, and that by Portunus trituberculatus 250~500Hz. The pressure level of the croaking sound by Scylla serrata was 68~70db, and that by Charybdis japonica, Telmessus acutidens and Portuens trituberculatus 50~62db. 4. Phonotactic responses of Nibea albiflora and Seriola quinqueradiata to the feeding sounds produced by their own species, the same body length were conspicuous with the phonotactic index of 56~87%, but that of Navodon modestus, Chrysophrys major and Fugu xanthopterus were hardly recognized. 5. Phonotactic responses of the sample fishes to the sinusoidal sound with the frequency range of 50 to 9,000 Hz were observed not conspicuous. 6. Phonotactic responses of Portunus trituberculatus to the croaking sounds produced by their own species was varied in the range of 40~100%, according to the carapace length and the sex.

  • PDF

A Survey on the Status of Noisy Working Environment in Manufacturing Industries (제조업 산업장의 소음 작업환경 실태에 관한 조사 연구)

  • Kim, Joon-Youn;Kim, Byung-Soo;Lee, Chae-Un;Jun, Jin-Ho;Lee, Jong-Tae;Kim, Jin-Ok
    • Journal of Preventive Medicine and Public Health
    • /
    • v.19 no.1 s.19
    • /
    • pp.16-30
    • /
    • 1986
  • In order to prepare the fundamental data for the improvement of noisy working environments and the effective hearing conservation program on workers exposed to industrial noise, the authors surveyed the working processes and evaluated the noise levels on 56 manufacturing industries in Pusan area from April to July in 1985. The results were summarized as follows : 1. The noise level was the highest in shipbuilding and repairing(95.6 dBA), and followed by steel rolling(94.0 dBA), manufacture of motor vehicles(93.1 dBA), manufacture of fishing nets(92.9 dBA), manufacture of testiles(92.5 dBA), iron and steel foundries(89.3 dBA), manufacture of metal products(89.1 dBA), preserving and processing of marine foods(87.0 dBA), manufacture of rubber products(85.3 dBA), manufacture of plywood(84.9 dBA) and manufacture of paints(84.5 dBA). 2. Among fifty surveyed working processes, the noise level of twenty-one processes (42%) exceeded the threshold limit value for 8 hours per day. 3. As the allowable exposure times by governmental threshold limit values to industrial noise level(dBA), cocking of shipbuilding and repairing and plating(CGL) of steel rolling were the shortest(30 minutes), and followed by assembling(rivet) of manufacture of motor vehicles(1 hour) weaving of manufacture of textiles and shot, machine, pipe laying of shipbuilding and repairing(2 hours). 4. By the result of octave band analysis on noisy working processes in excess of 90 dBA, the sound level was the highest at 2,000 Hz or 4,000 Hz. 5. It was recognized that the measurement of overall sound pressure level was also effective as octave band analysis in evaluating the industrial noise.

  • PDF

A Study on Skin Status with Acoustic Measurements of Skin Friction Noise (피부 마찰 소음 측정을 통한 피부 상태 연구)

  • Chang, Yun Hee;Seo, Dae Hoon;Koh, A Rum;Kim, Sun Young;Lim, Jun Man;Han, Jong Seup;Lee, Sang Hwa;Park, Sun Gyoo;Kim, Yang Han
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.2
    • /
    • pp.103-109
    • /
    • 2016
  • Efficacy of cosmetics has been mainly evaluated by qualitative and quantitative methods based on visual sense, tactile sense and skin structure until now. In this study, we suggested a novel evaluation method for skin status based on sound; measuring and analyzing the rubbing noise generated by applying cosmetics. First, the rubbing noise was measured at a close range by a high-sensitivity microphone in anechoic environment, and the noises were analyzed by 1/3 octave band analysis in frequency-domain. Three conditions, 1) before washing, 2) after washing and 3) after application of cosmetics, were compared. As a result, sound pressure level (SPL) of rubbing noise after washing was larger than that of before washing, and the SPL of rubbing noise after cosmetic application was the smallest. Furthermore, the energy of rubbing noise after application was higher than that of the before and after washing conditions in a low frequency band (lower than 2 kHz region). Conversely, the energy of rubbing noise after application was much lower than the others in a high-frequency band (upper than 2 kHz region). This change of energy distribution was described as a balloon-skin model. High SPL in the low frequency region after the cosmetic applications was due to the increase of "flexibility index", while SPL in the high frequency region significantly decreased because of the attenuation which is related to "softness index". Therefore, we developed two indices based on the spectrum-energy difference for evaluating skin conditions. This proposed method and indices were verified via skin flexibility and roughness measurement using cutometer and primos respectively. These results suggest that acoustic measurement of skin friction noise may be a new skin status evaluation method.

Clustering and classification of residential noise sources in apartment buildings based on machine learning using spectral and temporal characteristics (주파수 및 시간 특성을 활용한 머신러닝 기반 공동주택 주거소음의 군집화 및 분류)

  • Jeong-hun Kim;Song-mi Lee;Su-hong Kim;Eun-sung Song;Jong-kwan Ryu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.603-616
    • /
    • 2023
  • In this study, machine learning-based clustering and classification of residential noise in apartment buildings was conducted using frequency and temporal characteristics. First, a residential noise source dataset was constructed . The residential noise source dataset was consisted of floor impact, airborne, plumbing and equipment noise, environmental, and construction noise. The clustering of residential noise was performed by K-Means clustering method. For frequency characteristics, Leq and Lmax values were derived for 1/1 and 1/3 octave band for each sound source. For temporal characteristics, Leq values were derived at every 6 ms through sound pressure level analysis for 5 s. The number of k in K-Means clustering method was determined through the silhouette coefficient and elbow method. The clustering of residential noise source by frequency characteristic resulted in three clusters for both Leq and Lmax analysis. Temporal characteristic clustered residential noise source into 9 clusters for Leq and 11 clusters for Lmax. Clustering by frequency characteristic clustered according to the proportion of low frequency band. Then, to utilize the clustering results, the residential noise source was classified using three kinds of machine learning. The results of the residential noise classification showed the highest accuracy and f1-score for data labeled with Leq values in 1/3 octave bands, and the highest accuracy and f1-score for classifying residential noise sources with an Artificial Neural Network (ANN) model using both frequency and temporal features, with 93 % accuracy and 92 % f1-score.

A Study on the Noises of Fishes (어류가 내는 소리에 관하여)

  • CHO, AM;CHANG, Jee-won
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.8 no.1
    • /
    • pp.14-22
    • /
    • 1972
  • For the development of acoustic fishing method, the noises of fishes have been recorded and analy/'ed by many scientists. Some specimens of fishes were selected as such Cyprinus carpio, Ctenopharyngodon idellus Carassius carassius, and pagrosol1ms major in this experiment. The noises such as feeding noise, driving away noise, jumping noise and fi llip noise were recorded by the tape recorder, Sony Model 262, through the underwa te r microph I one, Oki ST 6582, and analyzed in frequencies bv octave band analyzer, Rion SA-55, and sound pressure level of source by sound level meter, Rion NA-opNN The supplied feed was placed within 5em apart from the hydrophone. The result of analyzed noises were as follow. Cyprinus carjJio; Feeding noise 250- 500 cps, 92- 99 dB Driving away noise 125-2, 000 eps, 101-112 dB Jumping noise 125-2, 000 eps, 99-116.5 dB Ctenopharyngodon idcllus; Driving away noise 125-1, 000 cps, 96-109 dB Carassius carassius; Feeding noise 250- 500 cps, 91. 5- 99.5 dB Driving away noise 125-1, 000 eps, 99-108 dB Carassius auratus Feeding noise 250 eps, 94-101 dB Driving away noise 125-1, 000 cps, 98-110 dB Pagrosomus major Feeding noise 230-500 cps, 90-101 dB Fillip noise 500 cps, 98-108 dB (1) Feeding noise was produced as like as snap noise of twig and gulping down saliva noise in human and dominant frequency range of the noise is 250-500 cps and noise level 90-101 dB. (2) It was found that feeding noise were not a monotonic but a complex tones though fish took the same food. (3) Driving away noise was produced not so keen and the wave form of the noise is rising very sharp and big amplitude in the oscillograph. Dominant frequency range of this noise was about 150-1, 000 cps and noise level 96-112 dB except thut of carp. (4) The frequency of snapper's fillip noise, when it produced by caudal fin in swimming at the surface of water, was 500 cps and noise level 93-108 dB snd that of jumping noise of carp about 150-2, 000 cps and noise level 99-116.5 dB.

  • PDF

Software Development of the Traffic Noise Prediction Based on the Frictional Interaction between Pavement Surface and Tire (포장노면과 타이어간의 마찰음 분석을 통한 교통소음예측 소프트웨어 개발)

  • Mun, Sung-Ho;Lee, Kwang-Ho;Cho, Dae-Seung
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.67-75
    • /
    • 2011
  • Domestic economic development, industrialization, and urbanization have brought along not only increased highway traffic but also elevated traffic noise levels. Thus, it is necessary to accurately predict the traffic noise levels in order to address the public demand of alleviating the noise levels in urban areas. In this study, the method of evaluating the sound power level of road traffic was investigated in terms of considering the types of road surface and vehicle, based on previous researches. Regarding CPX (Close Proximity Test) and Pass-by test, the measured noise data of Test Road of Korea Highway Corporation were utilized in order to construct the database of sound power levels of various vehicles. Specifically, the 38 noise measurement and analysis in 1/1-octave band frequencies at 12 pre-selected sites were carried out, considering topography and road surface. Finally, the comparison study was conducted between predicted and measured data in terms of traffic noise. The traffic noise prediction was based on the KRON (Korea Road Noise) program, which was developed being equipped wit 3-dimensional GUI. In addition, the traffic noise characteristics were evaluated in terms of vehicle types and pavement surface conditions.

Study on the improvement of prediction model for the railway environmental noise using ISO 9613-2 (ISO 9613-2를 이용한 철도 환경소음 예측 모델 개선에 관한 연구)

  • Jang, Seungho;Koh, Hyo-In;Hong, Jiyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.1
    • /
    • pp.11-26
    • /
    • 2017
  • Approximate empirical equations obtained by measuring overall noise levels at different distances have been used to evaluate environmental influence of the railway noise though the accurate prediction of noise levels is important. In this paper, a noise prediction model considering the frequency characteristics of noise sources and propagation was suggested to improve the accuracy of noise prediction. The railway noise source was assorted into track, wheel, traction and aerodynamic components and they were characterized with the source strength and speed coefficient at each octave-band frequency. Correction terms for the acoustic roughness and the track/bridge condition were introduced. The sound attenuation from a source to a receiver was calculated taking account of the geometrical divergence, atmospheric absorption, ground effect, diffraction at obstacles and directivity of source by applying ISO 9613-2. For obtaining the source strength and speed coefficients, the results of rolling noise model, numerical analysis and measurements of pass-by noise were analyzed. We compared the predicted and measured noise levels in various vehicles and tracks, and verified the accuracy of the present model. It is found that the present model gives less error than the conventional one, so that it can be applied to make the accurate prediction of railway noise effect and establish its countermeasures efficiently.

Response of Anchovy to Artificial Sounds (소리자극에 대한 멸치의 반응)

  • 김상한
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.14 no.2
    • /
    • pp.57-62
    • /
    • 1978
  • When fisherman use the boat seine net to catch anchovy, a large noise (drum can, small drum and small gong) is used to scare the anchovy school along the wing nets, and into the bag net were they are caught. We want to know how much of an effect these s:mnds have on forceing the anchovy school towards the bag net. The underwater sounds of ancho\'y, drum can, small drum and small gong were analyzed in the labroatory. The behavioral responeses to the playback sounds of anchovy feeding and sounds of artificial instruments were also investigated. The feeding and artificial sounds of the samples were recorded by a tape recorder through a hydrophone in an anechoic aquarium. The sound intensity level was measured by means of a sound level meter in an anechoic chamber. The frequency and intensity of various sounds were analyzed with an analyzing system consisting of a ~-octave filter set, a high speed level recorder, an amplifier and an oscilloscope. The most successful recording was edited into a 9 to 10 second sound track and was repeated in a sequence of 9 to 10 second intervals. The sequence was then reproduced into an anechoic aquarium through the underwater speaker. The results of investigation are as follows; 1. The frequency of the feeding sound was 63~80Hz, and the pressure level produced was less than 32db. 2. The frequencies of the artificial sounds were 315~ 1,OOOHz, and the pressure levels were 88~95 db in the air. 3. When a hydrophone was placed 70cm below the surface with artificial sounds (drum can, small drum and small gong) produced 1 meter above the surface, the pressure level decreased about 30db. 4. The feeding sound was ineffective in attracting the anchovy, because of interference from ambient noise. 5. The artificial sounds had such a small effect on the anchovy's that they could not be used in ocean fisheries.

  • PDF

Design of A Microstrip Linear Tapered Slot Antenna (마이크로스트립 선형 테이퍼형 슬롯 안테나 설계)

  • Jang, Jae-Sam;Kim, Cheol-Bok;Lee, Ho-Sang;Jung, Young-Ho;Jo, Dong-Ki;Lee, Mun-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.5
    • /
    • pp.40-45
    • /
    • 2008
  • In this paper, a microstrip linear tapered slot antenna is designed. A tapered slot antenna(TSA) has many advantages such as low profile, low weight, easy fabrication, and compatibility with monolithic microwave integrated circuits(MMIC). In addition, it has demonstrated multi octave bandwidth, moderately high gain, and symmetrical E- and H-plane beam patterns. A feed network is implemented with transition between a microstrip and a slot line for the microstrip linear tapered slot antenna. The transition is consist of two sides. One side has a microstrip line, the other side has a slot line. The dimensions of the microstrip and slot line are ${\lambda}_m/4$ and ${\lambda}_s/4$ at the center of the cross section of the microstrip and slot line. In order to get broad bandwidth antenna characteristics, the tapered length is chosen as $4{\lambda}_o$ and termination width is chosen as $1.75{\lambda}_o$. Experimental results show that the microstrip tapered slot antenna has symmetrical E- and H-plane beam patterns with around 5GHz of bandwidth at center frequency of 5.0GHz.