• 제목/요약/키워드: ocean reanalysis

검색결과 83건 처리시간 0.018초

A Study of Teleconnection between the South Asian and East Asian Monsoons: Comparison of Summer Monsoon Precipitation of Nepal and South Korea

  • Choi, Ki-Seon;Shrestha, Rijana;Kim, Baek-Jo;Lu, Riyu;Kim, Jeoung-Yun;Park, Ki-Jun;Jung, Ji-Hoon;Nam, Jae-Cheol
    • 한국환경과학회지
    • /
    • 제23권10호
    • /
    • pp.1719-1729
    • /
    • 2014
  • This study is carried out in order to bridge the gap to understand the relationships between South Asian and East Asian monsoon systems by comparing the summer (June-September) precipitation of Nepal and South Korea. Summer monsoon precipitation data from Nepal and South Korea during 30 years (1981-2010) are used in this research to investigate the association. NCEP/NCAR reanalysis data are also used to see the nature of large scale phenomena. Statistical applications are used to analyze these data. The analyzed results show that summer monsoon precipitation is higher over Nepal ($1513.98{\pm}159.29mm\;y^{-1}$) than that of South Korea ($907.80{\pm}204.71mm\;y^{-1}$) and the wettest period in both the countries is July. However, the coefficient of variation shows that amplitude of interannual variation of summer monsoon over South Korea (22.55%) is larger in comparison to that of Nepal (10.52%). Summer monsoon precipitation of Nepal is found to be significantly correlated to that of South Korea with a correlation coefficient of 0.52 (99% confidence level). Large-scale circulations are studied to further investigate the relationship between the two countries. wind and specific humidity at 850 hPa show a strong westerly from Arabian Sea to BOB and from BOB, wind moves towards Nepal in a northwestward direction during the positive rainfall years. In case of East Asia, strong northward displacement of wind can be observed from Pacific to South Korea and strong anticyclone over the northwestern Pacific Ocean. However, during the negative rainfall years, in the South Asian region we can find weak westerly from the Arabian Sea to BOB, wind is blowing in a southerly direction from Nepal and Bangladesh to BOB.

기계학습 기반의 IABP 부이 자료와 AMSR2 위성영상을 이용한 여름철 북극 대기 온도 추정 (The Estimation of Arctic Air Temperature in Summer Based on Machine Learning Approaches Using IABP Buoy and AMSR2 Satellite Data)

  • 한대현;김영준;임정호;이상균;이연수;김현철
    • 대한원격탐사학회지
    • /
    • 제34권6_2호
    • /
    • pp.1261-1272
    • /
    • 2018
  • 북극 지역의 대기 온도는 바다 및 해빙, 대기 사이의 에너지 교환에 큰 역할을 하므로 북극 대기 온도를 정확하게 파악하는 것은 중요하다. 하지만 현장 관측 자료들은 북극 대기 온도의 공간적인 분포를 나타내는 데에 한계가 있다. 따라서 본 연구에서는 부이(buoy) 자료와 Advanced Microwave Scanning Radiometer 2(AMSR2) 위성자료를 이용하여 기계학습 기반 여름철 대기 온도 추정 모델을 구축하였다. 기계학습으로는 random forest(RF) 및 support vector machine(SVM)을 사용하였으며, AMSR2 관측 시간에 따라 하루 두 번의 대기 온도를 추정하였다. 또한 추정된 대기 온도를 유럽 중기예보센터(European Centre for Medium-Range Weather Forecasts, ECMWF)의 ERA-Interim 재분석자료의 대기 온도와 공간 분포를 비교하였다. 교차 검증 결과 두 가지 기계학습 기법 모두 0.84-0.88의 $R^2$$1.31-1.53^{\circ}C$의 RMSE를 보였다. 공간적인 분포에서 IABP 부이 관측 자료가 존재하지 않는 바렌츠해(Barents Sea), 카라해(Kara Sea) 및 배핀만(Baffin bay) 지역에서는 기계학습 모델이 ERA-Interim 대기 온도에 비하여 과소 추정하는 경향을 보였다. 본 연구는 경험적인 북극 대기 온도 추정의 가능성과 한계점을 서술하였다.

우리나라 시군단위 벼 수확량 예측을 위한 다종 기상자료의 비교평가 (A Comparative Evaluation of Multiple Meteorological Datasets for the Rice Yield Prediction at the County Level in South Korea)

  • 조수빈;윤유정;김서연;정예민;김근아;강종구;김광진;조재일;이양원
    • 대한원격탐사학회지
    • /
    • 제37권2호
    • /
    • pp.337-357
    • /
    • 2021
  • 노지에서 재배되는 벼는 필연적으로 기상요소의 영향을 받을 수밖에 없으며, 벼 생장에 영향을 미치는 최적의 기상자료 확보 및 변수 선정은 벼 수확량 예측 모델링에 있어 매우 중요하다. 본 연구에서는 1996-2019년의 7월, 8월, 9월에 대하여, 다종의 기상자료 비교평가를 통해 우리나라 벼 수확량 모델링에 대한 적합성을 살펴보고, 기상요소와 벼 수확량 사이의 비선형적인 관계를 고려하여 기계학습 기법을 이용한 수확량 하인드캐스트 실험을 수행하고자 한다. 다종의 기상자료로는, 기상청 ASOS 지상관측과 함께, CRU-JRA ver. 2.1, ERA5 재분석장을 사용하였다. 이들 기상자료에서 공통적으로 도출할 수 있는 월 단위 기온, 상대습도, 일사량, 강수량 변수에 대한 비교를 통하여, 각 자료의 특성 및 벼 수확량과의 연관성을 분석하였다. CRU-JRA ver. 2.1 재분석장은 전반적으로 타 자료와 높은 일치성을 나타냈으며, 변수별 특징을 보았을 때, 상대습도는 벼 수확량에 미치는 영향이 거의 없었으나, 일사량은 벼 수확량과의 상관성이 상당히 높은 것으로 나타났다. 7월, 8월, 9월의 기온, 일사량, 강수량을 랜덤 포리스트 모델에 투입하여 벼 수확량 하인드캐스트 실험을 수행한 결과, CRU-JRA ver. 2.1 재분석장은 세 종류 기상자료 중에 가장 높은 정확도를 나타냈다(CC = 0.772). 또한 예측 모델에서 변수의 중요도는 일사량이 가장 높게 나타나, 기존의 농학적 연구결과와 일치하였다. 본 연구는 벼 수확량 예측을 위한 다종 기상자료의 선택에 있어 하나의 합리적 방법을 제시한 것으로써 의미가 있다고 하겠다.