• Title/Summary/Keyword: ocean environmental

Search Result 3,461, Processing Time 0.028 seconds

Real-time wireless marine radioactivity monitoring system using a SiPM-based mobile gamma spectroscopy mounted on an unmanned marine vehicle

  • Min Sun Lee;Soo Mee Kim;Mee Jang;Hyemi Cha;Jung-Min Seo;Seungjae Baek;Jong-Myoung Lim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2158-2165
    • /
    • 2023
  • Marine radioactivity monitoring is critical for taking immediate action in case of unexpected nuclear accidents at nuclear facilities located near coastal areas. Especially when the level of contamination is not predictable, mobile monitoring systems will be useful for wide-area ocean radiation survey and for determination of the level of radioactivity. Here, we used a silicon photomultiplier and a high-efficiency GAGG crystal to fabricate a compact, battery-powered gamma spectroscopy that can be used in an ocean environment. The developed spectroscopy has compact dimensions of 6.5 × 6.5× 8 cm3 and weighs 560 g. We used LoRa, a low-power wireless protocol for communication. Successful data transmission was achieved within 1.4 m water depth. The developed gamma spectroscopy was able to detect radioactivity from a 137Cs point source (3.7 kBq) at a distance of 20 cm in water. Moreover, we demonstrated an unmanned radioactivity monitoring system in a real sea by combining unmanned surface vehicle with the developed gamma spectroscopy. A hidden 137Cs source (3.07 MBq) was detected by the unmanned system at a distance of 3 m. After successfully testing the developed mobile spectroscopy in an ocean environment, we believe that our proposed system will be an effective solution for mobile real-time marine radioactivity monitoring.

Ocean Surface Current Retrieval Using Doppler Centroid of ERS-1 Raw SAR Data

  • Kim Ji-Eun;Kim Duk-jin;Moon Wooil M.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.590-593
    • /
    • 2004
  • Extraction of ocean surface current velocity offers important physical oceanographic parameters especially on understanding ocean environment. Although Remote Sensing techniques were highly developed, the investigation of ocean surface current using Synthetic Aperture Radar (SAR) is not an easy task. This paper presents the results of ocean surface current observation using Doppler Centroid of ERS-1 SAR data obtained off the coast of Korea peninsula. We employed the concept, in which Doppler frequency shift and the ocean surface current are closely related, to evaluate ocean surface current. Moving targets cause Doppler frequency shift of the back scattered radar waves of SAR, thus the line-of-sight velocity component of the scatters can be evaluated. The Doppler frequency shift can be measured by estimating the difference between Doppler Centroid of raw SAR data and reference Doppler Centroid. Theoretically, the Doppler Centroid is zero; however, squinted antenna which is affected by several physical factors causes Doppler Centroid to be nonzero. The reference Doppler Centroid can be obtained from measurements of sensor trajectory, attitude and Earth model. The estimated Doppler Centroid was compensated by considering the accurate attitude estimation of ERS-1 SAR. We could verify the correspondence between the estimated ocean surface current and observed in-situ data in the error bound.

  • PDF

Design of Oceanography Buoy - Part I: Structural Integrity of Hull (해양관측용 부이의 설계 건전성 평가 - Part I: 실해역 조건 하의 부이 선체 구조건전성 평가)

  • Kim, Tae-Woo;Keum, Dong-Min;Han, Dae-Suk;Lee, Won-Boo;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.81-88
    • /
    • 2009
  • An evaluation of the structural integrity of an oceanographic buoy subjected to extreme loads was carried out in this study. Load components, such as the current, waves, and wind load, which were required for the sea's environmental conditions, were calculated precisely. A non linear finite element analysis was conducted to elucidate the structural response of the buoy under extreme environmental conditions. Based on the surface drift velocity scheme, a dynamic impact analysis was also carried out for the case of collision accidents. The proposed numerical technique would be a useful and cost effective tool for design scheme evaluation in the field of oceanographic buoys.

Development of the Bio-Optical Algorithms to Retrieve the Ocean Environmental Parameters from GOCI

  • Ryu, Joo-Hyung;Moon, Jeong-Eon;P., Shanmugam;Min, Jee-Eun;Ahn, Yu-Hwan
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.82-85
    • /
    • 2006
  • The Geostationary Ocean Color Imager (GOCI) will be loaded in Communication, Ocean and Meteorological Satellite (COMS). To efficiently apply the GOCI data in the variety of fields, it is essential to develop the standard algorithm for estimating the concentration of ocean environmental components (, , and ). For developing the empirical algorithm, about 300 water samples and in situ measurements were collected from sea water around the Korean peninsula from 1998 to 2006. Two kinds of chlorophyll algorithms are developed by using statistical regression and fluorescence technique considering the bio-optical properties in Case-II waters. The single band algorithm for is derived by relationship between Rrs (555) and in situ concentration. The CDOM is estimated by absorption coefficient and ratio of Rrs(412)/Rrs(555). These standard algorithms will be programmed as a module of GOCI Data Processing System (GDPS) until 2008.

  • PDF

CO2 EXCHANGE COEFFICIENT IN THE WORLD OCEAN USING SATELLITE DATA

  • Osawa, Takahiro;Masatoshi, Akiyama;Suwa, Jun;Sugimori, Yasuhiro;Chen, Ru
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.49-57
    • /
    • 1998
  • CO2 transfer velocity is one of the key parameters for CO2 flux estimation at air - sea interface. However, current studies show that significant inconsistency still exists in its estimation when using different models and remotely sensed data sets, which acts as one of the main uncertainties involved in the computation of CO2 exchange coefficient between air - sea interface. In this study, wind data collected from SSM/I and scatterometer onboard ERS-1, in conjunction with operational NOAA/AVHRR, are applied to different models for calculating CO2 exchange coefficient in the world ocean. Their interrelationship and discrepancies inherent with different models and satellite data are analyzed. Finally, the seasonal and inter-annual variation of CO2 exchanges coefficient for different ocean basins are presented and discussed.

  • PDF

Motion predictive control for DPS using predicted drifted ship position based on deep learning and replay buffer

  • Lee, Daesoo;Lee, Seung Jae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.768-783
    • /
    • 2020
  • Typically, a Dynamic Positioning System (DPS) uses a PID feed-back system, and it often adopts a wind feed-forward system because of its easier implementation than a feed-forward system based on current or wave. But, because a ship's drifting motion is caused by wind, current, and wave drift loads, all three environmental loads should be considered. In this study, a motion predictive control for the PID feedback system of the DPS is proposed, which considers the three environmental loads by utilizing predicted drifted ship positions in the future since it contains information about the three environmental loads from the moment to the future. The prediction accuracy for the future drifted ship position is ensured by adopting deep learning algorithms and a replay buffer. Finally, it is shown that the proposed motion predictive system results in better station-keeping performance than the wind feed-forward system.

Numerical Wave Tank Technology for Multipurpose Simulation in Marine Environmental Engineering (해양환경공학의 다목적 시뮬레이션을 위한 수치파랑수조 기술)

  • 박종천
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.1-7
    • /
    • 2003
  • A virtual reality technology for multipurpose numerical simulation is developed to reproduce and investigate a variety of ocean environmental problems in a 3D Numerical Wave Tank(NWT). The governing equations for solving incompressible fluid motion are Navier-Stokes equation and continuity equation. The Marker-Density function technique is adopted to implement the fully nonlinear freesurface kinematic condition. The marine environmental situations, i.e., waves, currents, etc., are reproduced by use of multi-segmented wavemakers on the basis of the so-called ″snake-principle″. In this paper, some numerical reproduction techniques for regular, and irregular waves, multi-directional waves, Bull's-eye wave. wave-current, and solitary wave are presented, and a model test in motion with large amplitude of roll angle is conducted in the developed 3D-NWT, using a overlaid grid system.