• Title/Summary/Keyword: ocean colour image

Search Result 6, Processing Time 0.018 seconds

COMS CADU DATA GENERATION FOR COMS IMPS TEST

  • Seo, Seok-Bae;Ahn, Sang-II
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.88-91
    • /
    • 2008
  • The COMS IMPS (Communication Ocean and Meteorological Satellite IMage Pre-processing Subsystem) is developed for image pre-processing of COMS. For a test of the COMS IMPS, 7 support software are developed in KARI GS using simulated MI/GOCI WB (Wide-Band) data; COMS Fill Adder, MI (Meteorological Imager) CADU generator, GOCI (Geostationary Ocean Colour Imager) CADU generator, COMS CADU combiner, MI SD (Sensor Data) analyzer, GOCI SD analyzer, and COMS DM (Decomposition Module) test harness. This paper explains functions of developed support software and the COMS IMPS test using those software.

  • PDF

A DISCUSSION ON THE MAIN REASONS CAUSING THE MASS MORTALITY OF CORALS AND BENTHOS IN CONDAO ISLAND DURING OCTOBER 2005.

  • Son, Tong Phuoc Hoang;Khin, Lau Va;Ben, Hoang Xuan;Knee, Tan Chun;Ishizaka, Joji;Ransibrahmanakul, Varis;Tripathy, Sarat Chandra
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.463-466
    • /
    • 2006
  • During Mid October of 2005 a mass mortality of the corals occurred surrounding Con Dao Islands (South Vietnam) where is the recognized as one of the most famous marine parks of Vietnam. Results from the field survey in October 2005 showed that the mass mortality of corals and benthos focused only on the North-West of the islands whereas there was almost no death recorded in the South - East parts. Based on field data it was assumed that an overlap between high water temperature ($>30^{\circ}C$) and low salinity (<25%o) during short term was the impact causing the situation. In this paper, we try to explain this phenomenon based on the hydrographical view together with analyzing ocean colour images. A coral bleaching warning system also is proposed for Condao site.

  • PDF

Red Tide Detection through Image Fusion of GOCI and Landsat OLI (GOCI와 Landsat OLI 영상 융합을 통한 적조 탐지)

  • Shin, Jisun;Kim, Keunyong;Min, Jee-Eun;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.377-391
    • /
    • 2018
  • In order to efficiently monitor red tide over a wide range, the need for red tide detection using remote sensing is increasing. However, the previous studies focus on the development of red tide detection algorithm for ocean colour sensor. In this study, we propose the use of multi-sensor to improve the inaccuracy for red tide detection and remote sensing data in coastal areas with high turbidity, which are pointed out as limitations of satellite-based red tide monitoring. The study area were selected based on the red tide information provided by National Institute of Fisheries Science, and spatial fusion and spectral-based fusion were attempted using GOCI image as ocean colour sensor and Landsat OLI image as terrestrial sensor. Through spatial fusion of the two images, both the red tide of the coastal area and the outer sea areas, where the quality of Landsat OLI image was low, which were impossible to observe in GOCI images, showed improved detection results. As a result of spectral-based fusion performed by feature-level and rawdata-level, there was no significant difference in red tide distribution patterns derived from the two methods. However, in the feature-level method, the red tide area tends to overestimated as spatial resolution of the image low. As a result of pixel segmentation by linear spectral unmixing method, the difference in the red tide area was found to increase as the number of pixels with low red tide ratio increased. For rawdata-level, Gram-Schmidt sharpening method estimated a somewhat larger area than PC spectral sharpening method, but no significant difference was observed. In this study, it is shown that coastal red tide with high turbidity as well as outer sea areas can be detected through spatial fusion of ocean colour and terrestrial sensor. Also, by presenting various spectral-based fusion methods, more accurate red tide area estimation method is suggested. It is expected that this result will provide more precise detection of red tide around the Korean peninsula and accurate red tide area information needed to determine countermeasure to effectively control red tide.

Sequential detection simulation of red-tide evolution for geostationary ocean color instrument with realistic optical characteristics

  • Jeong, Soo-Min;Jeong, Yu-Kyeong;Ryu, Dong-Ok;Kim, Seong-Hui;Cho, Seong-Ick;Hong, Jin-Suk;Kim, Sug-Whan
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.49.3-49.3
    • /
    • 2009
  • Geostationary Ocean Colour Imager (GOCI) is the first ocean color instrument that will be operating in a geostationary orbit from 2010. GOCI will provide the crucial information of ocean environment around the Korean peninsula in high spatial and temporal resolutions at eight visible bands. We report an on-going development of imaging and radiometric performance prediction model for GOCI with realistic data for reflectance, transmittance, absorption, wave-front error and scattering properties for its optical elements. For performance simulation, Monte Carlo based ray tracing technique was used along the optical path starting from the Sun to the final detector plane for a fixed solar zenith angle. This was then followed by simulation of red-tide evolution detection and their radiance estimation, following the in-orbit operational sequence. The simulation results proves the GOCI flight model is capable of detecting both image and radiance originated from the key ocean phenomena including red tide. The model details and computational process are discussed with implications to other earth observation instruments.

  • PDF

Spatial Downscaling of Ocean Colour-Climate Change Initiative (OC-CCI) Forel-Ule Index Using GOCI Satellite Image and Machine Learning Technique (GOCI 위성영상과 기계학습 기법을 이용한 Ocean Colour-Climate Change Initiative (OC-CCI) Forel-Ule Index의 공간 상세화)

  • Sung, Taejun;Kim, Young Jun;Choi, Hyunyoung;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.959-974
    • /
    • 2021
  • Forel-Ule Index (FUI) is an index which classifies the colors of inland and seawater exist in nature into 21 gradesranging from indigo blue to cola brown. FUI has been analyzed in connection with the eutrophication, water quality, and light characteristics of water systems in many studies, and the possibility as a new water quality index which simultaneously contains optical information of water quality parameters has been suggested. In thisstudy, Ocean Colour-Climate Change Initiative (OC-CCI) based 4 km FUI was spatially downscaled to the resolution of 500 m using the Geostationary Ocean Color Imager (GOCI) data and Random Forest (RF) machine learning. Then, the RF-derived FUI was examined in terms of its correlation with various water quality parameters measured in coastal areas and its spatial distribution and seasonal characteristics. The results showed that the RF-derived FUI resulted in higher accuracy (Coefficient of Determination (R2)=0.81, Root Mean Square Error (RMSE)=0.7784) than GOCI-derived FUI estimated by Pitarch's OC-CCI FUI algorithm (R2=0.72, RMSE=0.9708). RF-derived FUI showed a high correlation with five water quality parameters including Total Nitrogen, Total Phosphorus, Chlorophyll-a, Total Suspended Solids, Transparency with the correlation coefficients of 0.87, 0.88, 0.97, 0.65, and -0.98, respectively. The temporal pattern of the RF-derived FUI well reflected the physical relationship with various water quality parameters with a strong seasonality. The research findingssuggested the potential of the high resolution FUI in coastal water quality management in the Korean Peninsula.

Simulation Approach for the Tracing the Marine Pollution Using Multi-Remote Sensing Data (다중 원격탐사 자료를 활용한 해양 오염 추적 모의 실험 방안에 대한 연구)

  • Kim, Keunyong;Kim, Euihyun;Choi, Jun Myoung;Shin, Jisun;Kim, Wonkook;Lee, Kwang-Jae;Son, Young Baek;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.249-261
    • /
    • 2020
  • Coastal monitoring using multiple platforms/sensors is a very important tools for accurately understanding the changes in offshore marine environment and disaster with high temporal and spatial resolutions. However, integrated observation studies using multiple platforms and sensors are insufficient, and none of them have been evaluated for efficiency and limitation of convergence. In this study, we aimed to suggest an integrated observation method with multi-remote sensing platform and sensors, and to diagnose the utility and limitation. Integrated in situ surveys were conducted using Rhodamine WT fluorescent dye to simulate various marine disasters. In September 2019, the distribution and movement of RWT dye patches were detected using satellite (Kompsat-2/3/3A, Landsat-8 OLI, Sentinel-3 OLCI and GOCI), unmanned aircraft (Mavic 2 pro and Inspire 2), and manned aircraft platforms after injecting fluorescent dye into the waters of the South Sea-Yeosu Sea. The initial patch size of the RWT dye was 2,600 ㎡ and spread to 62,000 ㎡ about 138 minutes later. The RWT patches gradually moved southwestward from the point where they were first released,similar to the pattern of tidal current flowing southwest as the tides gradually decreased. Unmanned Aerial Vehicles (UAVs) image showed highest resolution in terms of spatial and time resolution, but the coverage area was the narrowest. In the case of satellite images, the coverage area was wide, but there were some limitations compared to other platforms in terms of operability due to the long cycle of revisiting. For Sentinel-3 OLCI and GOCI, the spectral resolution and signal-to-noise ratio (SNR) were the highest, but small fluorescent dye detection was limited in terms of spatial resolution. In the case of hyperspectral sensor mounted on manned aircraft, the spectral resolution was the highest, but this was also somewhat limited in terms of operability. From this simulation approach, multi-platform integrated observation was able to confirm that time,space and spectral resolution could be significantly improved. In the future, if this study results are linked to coastal numerical models, it will be possible to predict the transport and diffusion of contaminants, and it is expected that it can contribute to improving model accuracy by using them as input and verification data of the numerical models.