• Title/Summary/Keyword: ocean color algorithms

Search Result 51, Processing Time 0.02 seconds

DEVELOPMENT OF GOCI/COMS DATA PROCESSING SYSTEM

  • Ahn, Yu-Hwan;Shanmugam, Palanisamy;Han, Hee-Jeong;Ryu, Joo-Hyung
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.90-93
    • /
    • 2006
  • The first Geostationary Ocean Color Imager (GOCI) onboard its Communication Ocean and Meteorological Satellite (COMS) is scheduled for launch in 2008. GOCI includes the eight visible-to-near-infrared (NIR) bands, 0.5km pixel resolution, and a coverage region of 2500 ${\times}$ 2500km centered at 36N and 130E. GOCI has had the scope of its objectives broadened to understand the role of the oceans and ocean productivity in the climate system, biogeochemical variables, geological and biological response to physical dynamics and to detect and monitor toxic algal blooms of notable extension through observations of ocean color. The special feature with GOCI is that like MODIS, MERIS and GLI, it will include the band triplets 660-680-745 for the measurements of sun-induced chlorophyll-a fluorescence signal from the ocean. The GOCI will provide SeaWiFS quality observations with frequencies of image acquisition 8 times during daytime and 2 times during nighttime. With all the above features, GOCI is considered to be a remote sensing tool with great potential to contribute to better understanding of coastal oceanic ecosystem dynamics and processes by addressing environmental features in a multidisciplinary way. To achieve the objectives of the GOCI mission, we develop the GOCI Data Processing System (GDPS) which integrates all necessary basic and advanced techniques to process the GOCI data and deliver the desired biological and geophysical products to its user community. Several useful ocean parameters estimated by in-water and other optical algorithms included in the GDPS will be used for monitoring the ocean environment of Korea and neighbouring countries and input into the models for climate change prediction.

  • PDF

Development $K_d({\lambda})$ and Visibility Algorithm for Ocean Color Sensor Around the Central Coasts of the Yellow Sea (황해 중부 연안 해역에서의 해색센서용 하향 확산 감쇠계수 및 수중시계 추정 알고리즘 개발)

  • Min, Jee-Eun;Ahn, Yu-Hwan;Lee, Kyu-Sung;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.4
    • /
    • pp.311-321
    • /
    • 2007
  • The diffuse attenuation coefficient for down-welling irradiance $K_d({\lambda})$, which is the propagation of down-welling irradiance at wavelength ${\lambda}$ from surface to a depth (z) in the ocean, and underwater visibility are important optical parameters for ocean studies. There have been several studies on $K_d({\lambda})$ and underwater visibility around the world, but only a few studies have focused on these properties in the Korean sea. Therefore, in the present study, we studied $K_d({\lambda})$ and underwater visibility around the coastal area of the Yellow Sea, and developed $K_d({\lambda})$ and underwater visibility algorithms for ocean color satellite sensor. For this research we conducted a field campaign around the Yellow Sea from $19{\sim}22$ September, 2006 and there we obtained a set of ocean optical and environmental data. From these datasets the $K_d({\lambda})$ and underwater visibility algorithms were empirically derived and compared with the existing NASA SeaWiFS $K_d({\lambda})$ algorithm and NRL (Naval Research Laboratory) underwater visibility algorithm. Such comparisons over a turbid area showed small difference in the $K_d({\lambda})$ algorithm and constants of our result for underwater visibility algorithm showed slightly higher values.

Overview and Prospective of Satellite Chlorophyll-a Concentration Retrieval Algorithms Suitable for Coastal Turbid Sea Waters (연안 혼탁 해수에 적합한 위성 클로로필-a 농도 산출 알고리즘 개관과 전망)

  • Park, Ji-Eun;Park, Kyung-Ae;Lee, Ji-Hyun
    • Journal of the Korean earth science society
    • /
    • v.42 no.3
    • /
    • pp.247-263
    • /
    • 2021
  • Climate change has been accelerating in coastal waters recently; therefore, the importance of coastal environmental monitoring is also increasing. Chlorophyll-a concentration, an important marine variable, in the surface layer of the global ocean has been retrieved for decades through various ocean color satellites and utilized in various research fields. However, the commonly used chlorophyll-a concentration algorithm is only suitable for application in clear water and cannot be applied to turbid waters because significant errors are caused by differences in their distinct components and optical properties. In addition, designing a standard algorithm for coastal waters is difficult because of differences in various optical characteristics depending on the coastal area. To overcome this problem, various algorithms have been developed and used considering the components and the variations in the optical properties of coastal waters with high turbidity. Chlorophyll-a concentration retrieval algorithms can be categorized into empirical algorithms, semi-analytic algorithms, and machine learning algorithms. These algorithms mainly use the blue-green band ratio based on the reflective spectrum of sea water as the basic form. In constrast, algorithms developed for turbid water utilizes the green-red band ratio, the red-near-infrared band ratio, and the inherent optical properties to compensate for the effect of dissolved organisms and suspended sediments in coastal area. Reliable retrieval of satellite chlorophyll-a concentration from turbid waters is essential for monitoring the coastal environment and understanding changes in the marine ecosystem. Therefore, this study summarizes the pre-existing algorithms that have been utilized for monitoring turbid Case 2 water and presents the problems associated with the mornitoring and study of seas around the Korean Peninsula. We also summarize the prospective for future ocean color satellites, which can yield more accurate and diverse results regarding the ecological environment with the development of multi-spectral and hyperspectral sensors.

An Analysis of the Relationship between Inherent Optical Properties and Ocean Color Algorithms Around the Korean Waters (한반도 주변의 해수 고유광특성과 해색 알고리즘의 관계 분석)

  • Min, Jee-Eun;Ryu, Joo-Hyung;Park, Young-Je
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.473-490
    • /
    • 2015
  • There are diverse sea areas within the coverage of GOCI which is observed around the Korea at one-hour intervals. It includes not only very clear ocean of East Sea, but also extremely turbid waters of the Yangtze River estuary. In this study, we analyzed the different optical characteristics of various sea areas using absorption coefficients of phytoplankton, Suspended Particulate Matter(SPM), Dissolved Organic Matter(DOM). Totally 959 sets of bio-optical and marine environmental data were obtained from 2009 to 2014 around the sea area of Korea. The East Sea, South Sea, East China Sea and offshore part of Yellow Sea showed similar pattern having high levels of contribution of phytoplankton and DOM. On the other hands, the coastal part of Mokpo and Gyeonggi Bay showed opposite pattern having high levels of contribution of SPM and DOM. As a result of the algorithm performance for chlorophyll-a(Chl-a) and SPM, Chl-a is mostly overestimated and SPM is mainly tended to be underestimated. Large amount of errors are induced by the SPM rather than the chl-a and DOM. These errors are primarily founded in the coastal waters having relatively high levels of $a_{SPM}$ contribution of more than 60%.

SATELLITE DETECTION OF RED TIDE ALGAL BLOOMS IN TURBID COASTAL WATERS

  • Ahn, Yu-Hwan;Shanmugam, Palanisamy
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.471-474
    • /
    • 2006
  • Several planktonic dinoflagellates, including Cochlodinium polykrikoides (p), are known to produce red tides responsible for massive fish kills and serious economic loss in turbid Northwest Pacific (Korean and neighboring) coastal waters during summer and fall seasons. In order to mitigate the impacts of these red tides, it is therefore very essential to detect, monitor and forecast their development and movement using currently available remote sensing technology because traditional ship-based field sampling and analysis are very limited in both space and temporal frequency. Satellite ocean color sensors, such as Sea-viewing Wide Field-of-view Sensor (SeaWiFS), are ideal instruments for detecting and monitoring these blooms because they provide relatively high frequency synoptic information over large areas. Thus, the present study attempts to evaluate the red tide index methods (previously developed by Ahn and Shanmugam et al., 2006) to identify potential areas of red tides from SeaWiFS imagery in Korean and neighboring waters. Findings revealed that the standard spectral ratio algorithms (OC4 and LCA) applied to SeaWiFS imagery yielded large errors in Chl retrievals for coastal areas, besides providing false information about the encountered red tides in the focused waters. On the contrary, the RI coupled with the standard spectral ratios yielded comprehensive information about various ranges of algal blooms, while RCA Chl showing a good agreement with in-situ data led to enhanced understanding of the spatial and temporal variability of the recent red tide occurrences in high scattering and absorbing waters off the Korean and Chinese coasts. The results suggest that the red tide index methods for the early detection of red tides blooms can provide state managers with accurate identification of the extent and location of blooms as a management tool.

  • PDF

Development the Geostationary Ocean Color Imager (GOCI) Data Processing System (GDPS) (정지궤도 해색탑재체(GOCI) 해양자료처리시스템(GDPS)의 개발)

  • Han, Hee-Jeong;Ryu, Joo-Hyung;Ahn, Yu-Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.239-249
    • /
    • 2010
  • The Geostationary Ocean Color Imager (GOCI) data-processing system (GDPS), which is a software system for satellite data processing and analysis of the first geostationary ocean color observation satellite, has been developed concurrently with the development of th satellite. The GDPS has functions to generate level 2 and 3 oceanographic analytical data, from level 1B data that comprise the total radiance information, by programming a specialized atmospheric algorithm and oceanic analytical algorithms to the software module. The GDPS will be a multiversion system not only as a standard Korea Ocean Satellite Center(KOSC) operational system, but also as a basic GOCI data-processing system for researchers and other users. Additionally, the GDPS will be used to make the GOCI images available for distribution by satellite network, to calculate the lookup table for radiometric calibration coefficients, to divide/mosaic several region images, to analyze time-series satellite data. the developed GDPS system has satisfied the user requirement to complete data production within 30 minutes. This system is expected to be able to be an excellent tool for monitoring both long-term and short-term changes of ocean environmental characteristics.

Satellite-detected red tide algal blooms in Korean and neighboring waters during 1999-2004

  • Ahn Yu-Hwan;Shanmugam Palanisamy
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.95-100
    • /
    • 2006
  • Measurements of ocean color from space since 1970s provided vital information with reference to physical and biogeochemical properties of the oceanic waters. The utility of these data has been explored in order to map and monitor highly toxic/or harmful algal blooms (HABs) that affected most of coastal waters throughout the world due to accelerated eutrophication from human activities and certain oceanic processes. However, the global atmospheric correction and bio-optical algorithms developed for oceanic waters were found to yield false information about the HABs in coastal waters. The present study aimed to evaluate the potential use of red tide index (RI) method, which has been developed by Ahn and Shanmugam (2005), for mapping of HABs in Korean and neighboring waters. Here we employed the SSMM to remove the atmospheric effect in the SeaWiFS image data and the achieved indices by RI method were found more appropriate in correctly identifying potential areas of the encountered HABs in Korean South Sea (KSS) and Chinese coastal waters during 1999-2004. But the existence of high absorbing and scattering materials greatly interfered with the standard OC4 algorithm which falsely identified red tides in these waters. In comparison with other methods, the RI approach for the early detection of HABs can provide state managers with accurate identification of the extent and location of these blooms as a management tool.

  • PDF

Sensitivity of COMS/GOCI Measured Top-of-atmosphere Reflectances to Atmospheric Aerosol Properties (COMS/GOCI 관측값의 대기 에어러솔의 특성에 대한 민감도 분석)

  • Lee, Kwon-Ho;Kim, Young-Joon
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.6
    • /
    • pp.559-569
    • /
    • 2008
  • The Geostationary Ocean Color Imager (GOCI) on board the Communication Ocean Meteorological Satellite (COMS), the first geostationary ocean color sensor, requires accurate atmospheric correction since its eight bands are also affected by atmospheric constituents such as gases, molecules and atmospheric aerosols. Unlike gases and molecules in the atmosphere, aerosols can interact with sunlight by complex scattering and absorption properties. For the purpose of qualified ocean remote sensing, understanding of aerosol-radiation interactions is needed. In this study, we show micro-physical and optical properties of aerosols using the Optical Property of Aerosol and Cloud (OPAC) aerosol models. Aerosol optical properties, then, were used to analysis the relationship between theoretical satellite measured radiation from radiative transfer calculations and aerosol optical thickness (AOT) under various environments (aerosol type and loadings). It is found that the choice of aerosol type makes little different in AOT retrieval for AOT<0.2. Otherwise AOT differences between true and retrieved increase as AOT increases. Furthermore, the differences between the AOT and angstrom exponent from standard algorithms and this study, and the comparison with ground based sunphotometer observations are investigated. Over the northeast Asian region, these comparisons suggest that spatially averaged mean AOT retrieved from this study is much better than from standard ocean color algorithm. Finally, these results will be useful for aerosol retrieval or atmospheric correction of COMS/GOCI data processing.

MULTISPECTRAL REMOTE SENSING ALGORITHMS FOR PARTICULATE ORGANIC CARBON (POC) AND ITS TEMPORAL AND SPATIAL VARIATION

  • Son, Young-Baek;Wang, Meng-Hua;Gardner, Wilford D.
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.450-453
    • /
    • 2006
  • Hydrographic data including particulate organic carbon (POC) from the Northeastern Gulf of Mexico (NEGOM) study were used along with remotely sensed data obtained from NASA's Sea-viewing Wide Field-of-view Sensor (SeaWiFS) to develop POC algorithms to estimate POC concentration based on empirical and model-based principal component analysis (PCA) methods. In Case I and II waters empirical maximized simple ratio (MSR) and model-based PCA algorithms using full wavebands (blue, green and red wavelengths) provide more robust estimates of POC. The predicted POC concentrations matched well the spatial and seasonal distributions of POC measured in situ in the Gulf of Mexico. The ease in calculating the MSR algorithm compared to PCA analysis makes MSR the preferred algorithm for routine use. In order to determine the inter-annual variations of POC, MSR algorithms applied to calculate 100 monthly mean values of POC concentrations (September 1997-December 2005). The spatial and temporal variations of POC and sea surface temperature (SST) were analyzed with the empirical orthogonal function (EOF) method. POC estimates showed inter-annual variation in three different locations and may be affected by El $Ni{\tilde{n}}o/Southern$ Oscillation (ENSO) events.

  • PDF

Application of SeaWiFS data for assessment of eutrophication in the Pearl River estuary

  • Chen, Chuqun;Li, Xiaobin
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.909-912
    • /
    • 2006
  • In this paper a method for remotely-sensed assessment of eutrophication was experimented. The water samples were collected for analysis of COD (chemical oxygen demand) and nutrients concentration, and the remote sensing reflectance data at the sampling points were synchronously measured using above-water method in two cruises, which were conducted in the Pearl River Estuary in January 2003 and January 2004 respectively. Based on the in-situ data the local algorithms for estimation of concentration of nutrients (P and N) and COD were developed by Partial Least Squares (PLS) regression. The algorithms were then applied to atmospheric-corrected SeaWiFS data and the COD and nutrients concentration in Pearl River Estuary were estimated. And then the assessment of eutrophication was carried out by comparison of the estimated nutrients and COD value with the water quality standard. The results show that the whole estuary is seriously in eutrophication.

  • PDF