• 제목/요약/키워드: occupational lead exposure

검색결과 115건 처리시간 0.02초

유도결합플라즈마 질량분석법을 이용한 혈장 중 극미량 납 분석 (Trace level analysis of Pb in plasma by inductively coupled plasma/mass spectrometry)

  • 이성배;양정선;최성봉;신호상
    • 분석과학
    • /
    • 제25권3호
    • /
    • pp.190-196
    • /
    • 2012
  • 납에 의한 노출에 대한 평가에는 주로 전혈 중 납을 사용하고 있으나 전혈 중 납은 납의 단기 노출에 대한 정보만을 제공한다는 단점이 있다. 납 노출의 만성적 노출지표인 혈장 중 납을 분석하기 위해서는 수 ng/L의 극미량 분석이 요구되어 납의 만성지표로서의 효용성 검증에 어려움이 있다. 본 연구에서는 납 노출 근로자의 만성 노출 지표로서 혈장 중 납을 분석하기 위하여 유도결합플라즈마 질량분석법을 정립하였다. 외부환경으로부터의 오염을 최소화시키기 위해 class 1,000 수준의 청정실을 설치한 후 가동 전과 후의 부유 분진량을 확인한 후 극미량 시료 분석을 수행하였다. 표준 우태아 혈청을 이용하여 표준물 첨가법에 의한 표준편차를 이용하여 계산한 최소검출한계는 4.3 ng/L, 최소정량한계는 12.2 ng/L이었으며, 신호-대-잡음 비로 계산한 최소검출한계는 7.0 ng/L, 최소정량한계는 22.1 ng/L이었다. 20 ng/L부터 2,000 ng/L 농도 범위에서 정밀도는 4% 이내였으며, 우태아 혈청에 20-2,000 ng/L의 농도로 첨가하여 계산한 회수율은 92.3-101.3%로 양호한 결과를 얻었다. 본 연구에서 제시한 방법을 사용하여 납 노출근로자의 혈장 및 혈청 중 납 분석이 가능하였으며 이를 통해 납의 만성노출에 대한 조사가 가능할 것으로 판단된다.

Exposure Assessment Suggests Exposure to Lung Cancer Carcinogens in a Painter Working in an Automobile Bumper Shop

  • Kim, Boowook;Yoon, Jin-Ha;Choi, Byung-Soon;Shin, Yong Chul
    • Safety and Health at Work
    • /
    • 제4권4호
    • /
    • pp.216-220
    • /
    • 2013
  • A 46-year-old man who had worked as a bumper spray painter in an automobile body shop for 15 years developed lung cancer. The patient was a nonsmoker with no family history of lung cancer. To determine whether the cancer was related to his work environment, we assessed the level of exposure to carcinogens during spray painting, sanding, and heat treatment. The results showed that spray painting with yellow paint increased the concentration of hexavalent chromium in the air to as much as $118.33{\mu}g/m^3$. Analysis of the paint bulk materials showed that hexavalent chromium was mostly found in the form of lead chromate. Interestingly, strontium chromate was also detected, and the concentration of strontium chromate increased in line with the brightness of the yellow color. Some paints contained about 1% crystalline silica in the form of quartz.

Effect of Lead Exposure on the Status of Reticulocyte Count Indices among Workers from Lead Battery Manufacturing Plant

  • Kalahasthi, Ravibabu;Barman, Tapu
    • Toxicological Research
    • /
    • 제32권4호
    • /
    • pp.281-287
    • /
    • 2016
  • Earlier studies conducted on lead-exposed workers have determined the reticulocyte count (RC) (%), but the parameters of Absolute Reticulocyte Count (ARC), Reticulocyte Index (RI), and Reticulocyte Production Index (RPI) were not reported. This study assessed the effect of lead (Pb) exposure on the status of reticulocyte count indices in workers occupied in lead battery plants. The present cross-sectional study was carried out on 391 male lead battery workers. The blood lead levels (BLL) were determined by using an Atomic Absorption Spectrophotometer. The RC (%) was estimated by using the supravital staining method. The parameters, such as ARC, RI, and RPI, were calculated by using the RC (%) with the red cell indices (RBC count and hematocrit). The levels of RBC count and hematocrit were determined by using an ABX Micros ES-60 hematology analyzer. The levels of reticulocyte count indices - RC (%), ARC, RI, and RPI significantly increased with elevated BLL. The association between BLL and reticulocyte count indices was positive and significant. The results of linear multiple regression analysis showed that the reticulocyte count (${\beta}=0.212$, P < 0.001), ARC (${\beta}=0.217$, P < 0.001), RI (${\beta}=0.194$, P < 0.001), and RPI (${\beta}=0.208$, P < 0.001) were positively associated with BLL. The variable, smoking habits, showed a significant positive association with reticulocyte count indices: RC (%) (${\beta}=0.188$, P < 0.001), ARC (${\beta}=0.174$, P < 0.001), RI (${\beta}=0.200$, P < 0.001), and RPI (${\beta}=0.151$, P < 0.005). The study results revealed that lead exposure may cause reticulocytosis with an increase of reticulocyte count indices.

Occupational asthma related to indoor air pollution in a worker at an indoor air gun shooting range: a case report

  • Kwang Min Lee;Seungho Lee;Yoon-Ji Kim;Seung-eun Lee;Youngki Kim;Dongmug Kang;Se-Yeong Kim
    • Annals of Occupational and Environmental Medicine
    • /
    • 제35권
    • /
    • pp.13.1-13.12
    • /
    • 2023
  • Background: Indoor air pollution can cause and exacerbate asthma. We report a previously undescribed case of occupational asthma related to indoor air pollution in a worker at an indoor air gun shooting range and highlight the potential risk of developing occupational asthma in this environment. Case presentation: A 31-year-old man presented with dyspnea, cough, and sputum and was diagnosed with asthma complicated by pneumonia. Objective evidence of asthma was obtained by performing a methacholine bronchial provocation test. It was suspected that the patient had occupational asthma, which began one month after changing jobs to work within the indoor air gun shooting range. The highest peak expiratory flow (PEF) diurnal variability on working days was 15%, but the highest variation was 24%, with 4 days out of 4 weeks having a variation of over 20% related to workplace exposure. Conversely, the diurnal variability on the rest days was 7%, and no day showed a variation exceeding 20%. The difference in the average PEF between working and rest days was 52 L/min. PEF deterioration during working days and improvement on rest days were noted. Conclusions: The results obtained from the in-depth analysis of the PEF were adequate to diagnose the patient with occupational asthma. Exposure to indoor air pollution and lead and the patient's atopy and allergic rhinitis may have contributed to the development of occupational asthma.

일부 제련 및 리사지 사업장에서 공기중 납 노출농도의 변화 (The change of air lead concentrations in litharge making and smelting industries)

  • 최재욱;김남수;조광성;함정오;이병국
    • 한국산업보건학회지
    • /
    • 제20권1호
    • /
    • pp.10-18
    • /
    • 2010
  • To provide necessary information for future environmental monitoring of smelting and litharge making industries in Korea, environmental monitoring dataset of air lead concentration of 4 lead industries(1 primary smelting, 2 secondary smelting and 1 litharge making industry) were analyzed from 1994 to 2007. Data were compared using geometric mean and standard deviation with minimum and maximum values according to year of measurement, type of lead industries and type of operation of lead industries. The geometric mean and standard deviation of air concentration for a total of 1140 samples in all lead industries for overall 14 years were 70.7${\mu}g/m^3$ and 5.51 with minimum of 1${\mu}g/m^3$ and maximum of 9,185 ${\mu}g/m^3$. The overall geometric means of air concentration were above the permissible exposure levels(PEL) until year of 2001 and thereafter they were remained at the level of half of PEL. The geometric means of primary smelting, secondary smelting and litharge making industry for overall 14 years were 21.7${\mu}g/m^3$(number of samples: 353), 82.5${\mu}g/m^3$(number of samples: 357) and 164.2 ${\mu}g/m^3$(number of samples: 430) respectively. In primary smelting industry, the highest geometric mean air concentration was 35.4 ${\mu}g/m^3$ in the secondary smelting operation; followed by casting operation (24.9 ${\mu}g/m^3$) and melting operation (14.9 ${\mu}g/m^3$), respectively. On the other hand, in secondary smelting industries, the highest geometric mean air concentration was 125.4${\mu}g/m^3$ in melting operation; followed by casting operation (90.5${\mu}g/m^3$) and pre-treatment operation (43.4${\mu}g/m^3$), respectively. However, in litharge making industries, there were no significant differences of geometric mean air concentrations between litharge operation and stabilizer operation. The proportion of over PEL (50${\mu}g/m^3$) was highest in litharge industry and followed by secondary smelting industries. However The proportions of over PEL(${\mu}g./m^3.$) were decreased by the years of environmental monitoring. The significant reduction of mean air lead concentration since year of 2000 was observed due to more active environmental engineering control and new introduction of new operation in manufacturing process, but may be also influenced by non-engineering method such as reduction of operation hours or reduction of exposure time during actual environmental measurement by industrial hygienist according to more strict enforcement of occupational and safety law by the government.

혈장 중 납의 만성독성 지표로의 활용에 관한 연구 (The Study on Possibility of Use of Lead in Plasma as a Chronic Toxicity Biomarker)

  • 이성배;임철홍;김남수
    • 한국산업보건학회지
    • /
    • 제29권2호
    • /
    • pp.195-207
    • /
    • 2019
  • Objectives: This study was performed to confirm whether plasma lead can be used as a chronic biomarker for the biological monitoring of exposure to lead. Methods: Lead concentrations in 66 plasma samples from retired lead workers (G.M. 60.25 years, Median 61.00 years) and 42 plasma samples from the general population (G.M. 53.76 years, Median 56.50 years) were measured using ICP/Mass. Tibia, whole blood, hemoglobin, hematocrit, and blood zinc protophorphyrin (ZPP) concentrations and urinary ${\delta}$-aminolevulinic acid (${\delta}-ALA$) were measured for correlation analysis with plasma lead. Results: The geometric mean concentration of lead in plasma was $0.23{\mu}g/L$ for the retired lead workers and $0.10{\mu}g/L$ for the general population sample. A simple correlation analysis of biomarkers showed that plasma lead concentration among the retired lead workers was highly correlated with lead concentration in the tibia and with blood lead concentration, and the plasma lead concentration among the general population correlated with ZPP concentration in the blood. The lead concentration in the tibia and the lead concentration in the whole blood increased with length of working period. As the period in the lead workplace increased, the ratio of lead in plasma to lead concentration in whole blood decreased. Conclusion: This study confirmed the possibility of a chronic biomarker of lead concentration in blood plasma as a biomarker. In the future, comparative studies with specific indicators will lead to more fruitful results.

자동차 정비업체 도장공정의 작업환경 및 근로자 노출 실태에 관한 연구 (A Study of Working Environment for Automotive Painting in Auto Repair Shops and Workers' Exposure to Hazardous Chemicals)

  • 심상효;정춘화;임진숙;이형구;김윤신
    • 한국환경보건학회지
    • /
    • 제35권3호
    • /
    • pp.153-161
    • /
    • 2009
  • The purpose of this paper is to evaluate 1) blood lead levels of workers at auto repair shops as Biological Exposure Indices (BEI) of toxic substances such as lead and toluene that are produced during automotive painting process, 2) the differences depending on personal characteristics of workers who have been exposed to toluene by using urine hippuric acid concentration as a marker and 3) the correlation between the concentration of hazardous chemicals in each workplace and the BEL. All subjects were male with a mean age of 36.2 years. In terms of age, most were in the 30 to 40 age group (13 persons, 48.1%). In relation to the length of work experience, the highest proportion had experience of 10 years of less (18 persons, 66.7%). Twenty three workers were cigarette smokers (85.2%) while 4 (14.8%) were non-smokers. In addition, more than 80% of the workers drank alcohol. Dust concentration and toluene exposure during automotive painting showed no significant difference with age, length of work experience, smoking and drinking while a significant difference (p<0.05) has been detected between lead concentration and smoking. The geometric mean of dust concentration, lead concentration and toluene concentration were $0.38mg/m^3,\;0.0021mg/m^3$ and 1.08ppm respectively. In addition, the geometric mean of blood lead levels and urine hippuric acid concentration were $1.70{\mu}g/dl$ and 0.25g/g respectively, which were lower than the standard levels suggested by the Ministry of Labor. To determine the influential factors on blood lead and urine hippuric acid concentrations, a correlation analysis has been conducted with variables of air, lead and toluene concentrations, age, length of work experience and amount of cigarette smoking. According to the analysis, a relatively high correlation (p<0.01) has been observed between air lead concentration and biological sample concentration.

국내 무기안료 제조 및 취급 공정에서의 공기 중 크롬산연 노출 평가 (Evaluation of Workers' Exposures to Airborne Lead chromate in the Producing and Using Industries)

  • 최호춘;안선희;이현석;김화성
    • 한국산업보건학회지
    • /
    • 제18권4호
    • /
    • pp.293-302
    • /
    • 2008
  • Lead chromate is made by sodium dichromate and lead acetate, and has being used widely in the part of pigment, paints, inks, plastics and so on. Even though lead chromate has health hazards which like both lead and chromium, there are a few study about pigment workplaces using lead chromate in Korea. The purpose of this study is to evaluate workers' exposure levels and airborne lead and chromium concentration in the pigment workplaces using lead chromate. There are 20 workers in the total 5 workplaces. 10 workers(50%) have been exposed to lead and 3 workers(15%) have been exposed to chromium, which exceeded the American Conference of Governmental Industrial Hygienists(ACGIH) Threshold Limit Value (Pb: $0.05\;mg/m^3$, Cr: $0.012\;mg/m^3$) and Korean Ministry of Labor's Standard. Geometric mean (GM) of airborne lead was highest in pigment ($0.0421\;mg/m^3$), paint ($0.0020\;mg/m^3$) and PVC coloring ($0.0007\;mg/m^3$), respectively(p<0.05). The result of airborne chromium concentration was paint ($0.0033\;mg/m^3$), paint ($0.0004\;mg/m^3$) and PVC coloring ($0.0003\;mg/m^3$). Also the lead and chromium concentration in the manual process is each 30 times and 10 times higher than the value in automatic process(p<0.01). In the classified process by detail, the concentration of airborne lead was $0.0638\;mg/m^3$ in grinding & packaging, mixture & after-measuring ($0.0436\;mg/m^3$), filtration & drying ($0.0402\;mg/m^3$), lead nitrate & dissolution($0.0129\;mg/m^3$), pigment commitment & mixture ($0.0013\;mg/m^3$) and dispersion & grinding ($0.0010\;mg/m^3$) (p<0.05). Moreover the concentration of a sample in weighting & packaging was $0.0023\;mg/m^3$. The concentration of lead in workers' blood was pigment (15.12 ug/dl), paint (4.74 ug/dl) and PVC coloring (2.50 ug/dl), and some samples have exceeded biological exposure limit. In conclusion, the depending on their work industry and process, workers have been exposed to the high lead chromate.

An investigation of lead absorption in an electric accumulator factory with the use of personal samplers

  • Williams M.K.;King E.;Walford Joan
    • 대한예방의학회:학술대회논문집
    • /
    • 대한예방의학회 1994년도 교수 연수회(환경)
    • /
    • pp.561-575
    • /
    • 1994
  • Williams, M K., King, E., and Walford, Joan (1969). Brit. J. industr. Med., 26, 202-216. An investigation of lead absorption in an electric accumulator factory with the use of personal samplers. Thirty-nine lead workers and controls, in stable conditions of exposure, each wore personal lead-in-air samplers daily for two weeks. During the second week samples for blood lead, urinary lead, urinary coproporphyrin, urinary $\gamma$-aminolevulinic acid (ALA), the punctate basophil count, and haemoglobin were taken daily. Duplicate estimations were made on one day. The lead exposures of men doing almost identical jobs differed by ratios of up to four to one. This could be attributed on y to personal differences in working habits. The correlation coefficients and regression equations of the biochemical tests with lead-in-air and with each other were determined. The mean values and $95\%$ confidence limits of single determinations of some of the biochemical tests corresponding to the two commonly accepted TLVs of lead-in-air (0-20 and 0-15 mg./$m^{3}$) were calculated from the regression equations. For each biochemical test the variation due to analytical error, the variation from day to day within subjects and the residual variation about the regression on lead-in-air were calculated. Previous estimates of the latter are not known. Excessive confidence may be placed in an index of exposure due to its low coefficient of variation within subjects unless the coefficient of variation between subjects about regression is taken into account. The correction for specific gravity of estimations of lead and ALA in spot samples of urine was found to reduce slightly the residual variation between subjects about the regression on lead-in-air and to increase the correlations with lead-in-air and with the other biochemical tests, but these changes were not statistically significant. The modified method used for estimating blood lead and urinary lead is described and validated.

  • PDF

충청남도 산업단지 인근지역 주민의 생체시료 중 중금속 농도평가 (Exposure Assessment of Heavy Metals using Exposure Biomarkers among Residents Living Near a Chungcheongnam-do Province Industrial Complex Area)

  • 주요섭;노상철
    • 한국환경보건학회지
    • /
    • 제42권3호
    • /
    • pp.213-223
    • /
    • 2016
  • Objectives: This study was designed to assess the level of physical exposure to heavy metals among residents who live around a Chungcheongnam-do Province industrial complex and to provide baseline data on the effects and harms of heavy metals on the human body by comparing their exposure levels to those of people from control regions. Methods: We measured blood lead and cadmium levels and urine mercury and chromium levels and conducted a survey among 559 residents from the affected area and 347 residents of other areas. Results: Blood lead and cadmium levels and urine mercury levels were significantly higher in the case region than among those in the control region (p=0.013, p<0.001, p<0.001, respectively). In the thermoelectric power plant area, blood cadmium and urine mercury levels were significantly higher than in the control region (p<0.001, p<0.001, respectively). In the steel mill and petrochemical industry areas, blood cadmium level was significantly higher than that in the control region (p<0.001). Dividing groups by the reference level of blood cadmium ($2{\mu}g/L$), the odds ratios between the case and control regions were 2.56 (95% CI=1.83-3.58), 3.11 (95% CI=2.06-4.71) for the thermoelectric power plant area, 1.78 (95% CI=1.19-2.65) for the steel mill area and 4.07 (95% CI=2.40-6.89) for petrochemical industry area. Conclusion: This study showed that the levels of exposure to heavy metals among residents living near a Chungcheongnam-do Province industrial complex were significantly higher than those in the control region. This seems to be attributable to exposure to heavy metals emissions from the industrial complex. Further research and safety measures are required to protect residents' health.