• Title/Summary/Keyword: obstacle detection on a slope

Search Result 4, Processing Time 0.017 seconds

Obstacle Position Detection on an Inclined Plane Using Randomized Hough Transform and Corner Detection (랜덤하프변환과 코너추출을 이용한 경사면의 장애물 위치 탐색)

  • Hwang, Sun-Min;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.419-428
    • /
    • 2011
  • This paper suggests a judgement method for an inclined plane before entrance of it and the detection of obstacle position. Main idea is started from the assumption that obstacle is always on the bottom plane, and corner appears at this position. The process to detect the obstacle consists of three steps. First the 3D data using stereo matching is acquired to detect an obstacle. Second a bottom plane is extracted by using limit condition. Last the obstacle position is found by using Harris corner detection. Obstacle position detection on an inclined plane was verified by outdoor and indoor experiment. In error analysis, it is confirmed that an average error of obstacle detection in outdoor was larger than the error in indoor but the error are within about 0.030 m. This method will be applied to unmanned vehicles to navigate under various environment.

Stereo-Vision Based Road Slope Estimation and Free Space Detection on Road (스테레오비전 기반의 도로의 기울기 추정과 자유주행공간 검출)

  • Lee, Ki-Yong;Lee, Joon-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.199-205
    • /
    • 2011
  • This paper presents an algorithm capable of detecting free space for the autonomous vehicle navigation. The algorithm consists of two main steps: 1) estimation of longitudinal profile of road, 2) detection of free space. The estimation of longitudinal profile of road is detection of v-line in v-disparity image which is corresponded to road slope, using v-disparity image and hough transform, Dijkstra algorithm. To detect free space, we detect u-line in u-disparity image which is a boundary line between free space and obstacle's region, using u-disparity image and dynamic programming. Free space is decided by detected v-line and u-line. The proposed algorithm is proven to be successful through experiments under various traffic scenarios.

An Approach for Security Problems in Visual Surveillance Systems by Combining Multiple Sensors and Obstacle Detection

  • Teng, Zhu;Liu, Feng;Zhang, Baopeng;Kang, Dong-Joong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1284-1292
    • /
    • 2015
  • As visual surveillance systems become more and more common in human lives, approaches based on these systems to solve security problems in practice are boosted, especially in railway applications. In this paper, we first propose a robust snag detection algorithm and then present a railway security system by using a combination of multiple sensors and the vision based snag detection algorithm. The system aims safety at several repeatedly occurred situations including slope protection, inspection of the falling-object from bridges, and the detection of snags and foreign objects on the rail. Experiments demonstrate that the snag detection is relatively robust and the system could guarantee the security of the railway through these real-time protections and detections.

A Design of Collision Avoidance System of an Underwater Vehicle (수중운동체의 충돌회피시스템에 대한 연구)

  • Nam-Sun Son;Key-Pyo Rhee;Sang-Mu Lee;Dong-Jin Yeo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.4
    • /
    • pp.23-29
    • /
    • 2001
  • An Obstacle Avoidance System(OAS) of Underwater Vehicle(UV) in diving and steering plane is investigated. The concept of Imaginary Reference Line(IRL), which acts as the seabed in the diving plane, is introduced to apply the diving plane avoidance algorithm to the steering plane algorithm. Furthermore, the distance to the obstacle and the slope information of the obstacle are used for more efficient and safer avoidance. As for the control algorithm, the sliding mode controller is adopted to consider the nonlinearity of the equations of motion and to get the robustness of the designed system. To verify the obstacle avoidance ability of the designed system, numerical simulations are carried out on the cases of some presumed three-dimensional obstacles. The effects of the sonar and the clearance factor used in avoidance algorithm are also investigated. Through these, it is found that the designed avoidance system can successfully cope with various obstacles and the detection range of sonar is proven to bea significant parameter to the performance of the avoidance.

  • PDF