• Title/Summary/Keyword: obstacle avoidance

Search Result 602, Processing Time 0.025 seconds

A mathematical approach to motion planning for time-varying obstacle avoidance (시변 장애물 회피 동작 계획을 위한 수학적 접근 방법)

  • 고낙용;이범희;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.388-393
    • /
    • 1990
  • A robot manipulator and an obstacle are described mathematically in joint space, with the mathematical representation for the collision between the robot manipulator and the obstacle. Using these descriptions, the robot motion planning problem is formulated which can be used to avoide a time varying obstacle. To solve the problem, the constraints on motion planning are discretized in joint space. An analytical method is proposed for planning the motion in joint space from a given starting point to the goal point. It is found that solving the inverse kinematics problem is not necessary to get the control input to the joint motion controller for collision avoidance.

  • PDF

Goal-directed Obstacle Avoidance Using Lane Method (레인 방법에 기반한 이동 로봇의 장애물 회피)

  • Do, Hyun-Min;Kim, Yong-Shik;Kim, Bong-Keun;Lee, Jae-Hoon;Ohba, Kohtaro
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.2
    • /
    • pp.121-129
    • /
    • 2009
  • This paper presents a goal-directed reactive obstacle avoidance method based on lane method. The reactive collision avoidance is necessarily required for a robot to navigate autonomously in dynamic environments. Many methods are suggested to implement this concept and one of them is the lane method. The lane method divides the environment into lanes and then chooses the best lane to follow. The proposed method does not use the discrete lane but chooses a line closest to the original target line without collision when an obstacle is detected, thus it has a merit in the aspect of running time and it is more proper for narrow corridor environment. If an obstacle disturbs the movement of a robot by blocking a target path, a robot generates a temporary target line, which is parallel to an original target line and tangential to an obstacle circle, to avoid a collision with an obstacle and changes to and follows that line until an obstacle is removed. After an obstacle is clear, a robot returns to an original target line and proceeds to the goal point. Obstacleis recognized by laser range finder sensor and represented by a circle. Our method has been implemented and tested in a corridor environment and experimental results show that our method can work reliably.

  • PDF

Unsupervised Real-time Obstacle Avoidance Technique based on a Hybrid Fuzzy Method for AUVs

  • Anwary, Arif Reza;Lee, Young-Il;Jung, Hee;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.1
    • /
    • pp.82-86
    • /
    • 2008
  • The article presents ARTMAP and Fuzzy BK-Product approach underwater obstacle avoidance for the Autonomous underwater Vehicles (AUV). The AUV moves an unstructured area of underwater and could be met with obstacles in its way. The AUVs are equipped with complex sensorial systems like camera, aquatic sonar system, and transducers. A Neural integrated Fuzzy BK-Product controller, which integrates Fuzzy logic representation of the human thinking procedure with the learning capabilities of neural-networks (ARTMAP), is developed for obstacle avoidance in the case of unstructured areas. In this paper, ARTMAP-Fuzzy BK-Product controller architecture comprises of two distinct elements, are 1) Fuzzy Logic Membership Function and 2) Feed-Forward ART component. Feed-Forward ART component is used to understanding the unstructured underwater environment and Fuzzy BK-Product interpolates the Fuzzy rule set and after the defuzzyfication, the output is used to take the decision for safety direction to go for avoiding the obstacle collision with the AUV. An on-line reinforcement learning method is introduced which adapts the performance of the fuzzy units continuously to any changes in the environment and make decision for the optimal path from source to destination.

Utilization of Laser Range Measurements for Guiding Unmanned Agricultural Machinery

  • Jung, I. G.;Park, W. P.;Kim, S. C.;Sung, J. H.;Chung, S. O.
    • Agricultural and Biosystems Engineering
    • /
    • v.2 no.2
    • /
    • pp.69-74
    • /
    • 2001
  • Detection of operation lines in farm works, object recognition and obstacle avoidance are essential pre-requisite technologies for unmanned agricultural machinery. A CCD camera, which has been largely used for these functions, is expensive and has difficulty in real-time signal processing. In this study, a laser range sensor was selected as the guiding vision for unmanned agricultural machinery such as a tractor. To achieve this capability, algorithms for distance measurement, signal filtering, object recognition, and obstacle avoidance were developed. Computer simulations were carried out to evaluate performance of the algorithms. Experiments were also conducted with various materials and shapes, Laser beam lost its intensity for poor reflective materials, resulting in less range value than actual, so a compensation technique was considered to be necessary. Object detection system was fabricated on an agricultural tractor and the performance was evaluated. As test result for obstacle detection and avoidance in field, to detect and avoid obstacle for path finding with guiding system for unmanned agricultural machinery was enable.

  • PDF

Local Obstacle Avoidance Method of Mobile Robots Using LASER scanning sensor (레이저 스캐닝 센서를 이용한 이동 로봇의 지역 장애물 회피 방법)

  • Kim, Sung Cheol;Kang, Won Chan;Kim, Dong Ok;Seo, Dong Jin;Ko, Nak Yong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.3
    • /
    • pp.155-160
    • /
    • 2002
  • This paper focuses on the problem of local obstacle avoidance of mobile robots. To solve this problem, the safety direction section search algorithm is suggested. This concept is mainly composed with non-collision section and collision section from the detecting area of laser scanning sensor. Then, we will search for the most suitable direction in these sections. The proposed local motion planning method is simple and requires less computation than others. An environment model is developed using the vector space concept to determine robot motion direction taking the target direction, obstacle configuration, and robot trajectory into account. Since the motion command is obtained considering motion dynamics, it results in smooth and fast as well as safe movement. Using the mobile base, the proposed obstacle avoidance method is tested, especially in the environment with pillar, wall and some doors. Also, the proposed autonomous motion planning and control algorithm are tested extensively. The experimental results show the proposed method yields safe and stable robot motion through the motion speed is not so fast.

A Fuzzy Control of Autonomous Mobile Robot for Obstacle Avoidance (장애물 회피를 위한 자율이동로봇의 퍼지제어)

  • Chae Moon-Seok;Jung Tae-Young;Kang Suk-Bum;Yang Tae-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.9
    • /
    • pp.1718-1726
    • /
    • 2006
  • In this paper, we proposed a fuzzy controller and algorithm for efficiently obstacle avoidance in unknown space. The ultrasonic sensor is used for position and distance recognition of obstacle, and fuzzy controller is used for left and right wheels angular velocity control. The fuzzification is used singleton method and the control rule is each wheel forty-nine. The fuzzy inference is used simplified Mamdani's reasoning and defuzzification is used SCOG(Simplified Center Of Gravity). The computer simulation based on mobile robot modelling was performed for the capacity of fuzzy controller and the really applicable possibility revaluation of the proposed avoidance algorithm and fuzzy controller. As a result, mobile robot was exactly reached in target and it avoided obstacle efficiently.

Implementation of an Obstacle Avoidance System Based on a Low-cost LiDAR Sensor for Autonomous Navigation of an Unmanned Ship (무인선박의 자율운항을 위한 저가형 LiDAR센서 기반의 장애물 회피 시스템 구현)

  • Song, HyunWoo;Lee, Kwangkook;Kim, Dong Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.3
    • /
    • pp.480-488
    • /
    • 2019
  • In this paper, we propose an obstacle avoidance system for an unmanned ship to navigate safely in dynamic environments. Also, in this paper, one-dimensional low-cost lidar sensor is used, and a servo motor is used to implement the lidar sensor in a two-dimensional space. The distance and direction of an obstacle are measured through the two-dimensional lidar sensor. The unmanned ship is controlled by the application at a Tablet PC. The user inputs the coordinates of the destination in Google maps. Then the position of the unmanned ship is compared with the position of the destination through GPS and a geomagnetic sensor. If the unmanned ship finds obstacles while moving to its destination, it avoids obstacles through a fuzzy control-based algorithm. The paper shows that the experimental results can effectively construct an obstacle avoidance system for an unmanned ship with a low-cost LiDAR sensor using fuzzy control.

A Design of Collision Avoidance System of an Underwater Vehicle (수중운동체의 충돌회피시스템에 대한 연구)

  • Nam-Sun Son;Key-Pyo Rhee;Sang-Mu Lee;Dong-Jin Yeo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.4
    • /
    • pp.23-29
    • /
    • 2001
  • An Obstacle Avoidance System(OAS) of Underwater Vehicle(UV) in diving and steering plane is investigated. The concept of Imaginary Reference Line(IRL), which acts as the seabed in the diving plane, is introduced to apply the diving plane avoidance algorithm to the steering plane algorithm. Furthermore, the distance to the obstacle and the slope information of the obstacle are used for more efficient and safer avoidance. As for the control algorithm, the sliding mode controller is adopted to consider the nonlinearity of the equations of motion and to get the robustness of the designed system. To verify the obstacle avoidance ability of the designed system, numerical simulations are carried out on the cases of some presumed three-dimensional obstacles. The effects of the sonar and the clearance factor used in avoidance algorithm are also investigated. Through these, it is found that the designed avoidance system can successfully cope with various obstacles and the detection range of sonar is proven to bea significant parameter to the performance of the avoidance.

  • PDF

A Real-Time Obstacle Avoidance of Mobile Robot Using Nearness Diagram, Limit-Cycle and Vector Field Method (Nearness Diagram, Limit-Cycle 및 벡터장법을 이용한 이동로봇의 실시간 장애물 회피)

  • Kim, Pil-Gyeom;Jung, Yoon-Ho;Yoon, Jae-Ho;Jie, Min-Seok;Lee, Kang-Woong
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.2
    • /
    • pp.145-151
    • /
    • 2006
  • In this paper, we propose a novel navigation method combined Nearness Diagram, Limit-Cycle method and the Vector Field Method for avoidance of unexpected obstacles in the dynamic environment. The Limit-Cycle method is used to obstacle avoidance in front of the robot and the Vector Field Method is used to obstacle avoidance in the side of robot. And the Nearness Diagram Navigation is used to obstacle avoidance in the nearness area of the robot. The performance of the proposed method is demonstrate by simulations.

  • PDF

The Obstacle Avoidance Algorithm of Mobile Robot using Line Histogram Intensity (Line Histogram Intensity를 이용한 이동로봇의 장애물 회피 알고리즘)

  • 류한성;최중경;구본민;박무열;윤경섭;윤석영
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.331-334
    • /
    • 2002
  • In this paper, we present two types of vision algorithm that mobile robot has CCD camera. for obstacle avoidance. This is simple algorithm that compare with grey level from input images. Also, The mobile robot depend on image processing and move command from PC host. we has been studied self controlled mobile robot system with CCD camera. This system consists of digital signal processor, step motor, RF module and CCD camera. we used wireless RF module for movable command transmitting between robot and host PC. This robot go straight until recognize obstacle from input image that preprocessed by edge detection, converting, thresholding. And it could avoid the obstacle when recognize obstacle by line histogram intensity. Host PC measurement wave from various line histogram each 20 Pixel. This histogram Is ( x , y ) value of pixel. For example, first line histogram intensity wave from ( 0, 0 ) to ( 0, 197 ) and last wave from ( 280, 0 ) to ( 280, 197 ). So we find uniform wave region and nonuniform wave region. The period of uniform wave is obstacle region. we guess that algorithm is very useful about moving robot for obstacle avoidance.

  • PDF