• 제목/요약/키워드: observational environment

검색결과 147건 처리시간 0.018초

서울·대구 ASOS 지점에서 건물에 의한 일조 차단 영향 (Blocking Effects of Buildings on Sunshine Duration at Seoul and Daegu ASOSs)

  • 박수진;김재진
    • 대기
    • /
    • 제24권1호
    • /
    • pp.17-27
    • /
    • 2014
  • In this study, the observational environment for sunshine duration at Seoul and Daegu Automated Synoptic Observing Systems (ASOSs) was analyzed using a numerical model. In order to analyze the effects of topography and buildings on observational environment for sunshine duration, the model domains including the elevated building and mountainous areas around Seoul and Daegu ASOSs were considered. Three dimensional topography and buildings used as input data for the numerical model were constructed using a geographic information system (GIS) data. Solar azimuth and altitude angles calculated for the analysis period (one-week for each season in 2008) in this study were validated against those by Korea Astronomy and Space Science Institute (KASI). The starting and ending times of sunshine duration observed at ASOSs largely differed from the respective sunrise and sunset times simply calculated using solar angles and information of ASOSs' latitude and longitude, because uneven topography and elevated buildings around ASOSs cut off sunshine duration right after the sunrise and right before the sunset. The model produced the sunshine indices for Seoul and Daegu ASOSs with the time interval of one minute and the period of one week for each season and we compared the hourly averaged indices with those observed at the ASOSs. One week of which the cloudiness is lowest for each season is selected for analysis. Not only the adjacent buildings but also distant buildings and mountain cut off sunshine duration right after the sunrise and right before the sunset. The buildings and topography cutting off sunshine duration were found for each analyzing date. It was suggested that, in order to evaluate the observational environment for sunshine duration, we need to consider even the information of topography and/or building far away from ASOSs. This study also showed that the analyzing method considering the GIS data is very useful for evaluation of observational environment for sunshine duration.

광양만권역에서의 자료동화된 대기 유동장이 대기 오염 물질의 확산장에 미치는 영향에 관한 수치모의 (Numerical Simulation of Effects of Atmospheric Flow Fields Using SurFace Observational Data on Dispersion Fields of Air Pollutants in Gwangyang Bay)

  • 이화운;원혜영;최현정;김현구
    • 한국대기환경학회지
    • /
    • 제21권2호
    • /
    • pp.169-178
    • /
    • 2005
  • A critical component of air pollution modeling is the representation of atmospheric flow fields within a model domain, since an accurate air quality simulation requires an accurate portrayal of the three-dimensional wind fields. The present study investigated data assimilation using surface observational data in the complex coastal regions to simulate a realistic atmospheric flow fields. Surface observational data were categorized into three groups (Near coastal region, Far coastal region 1, Far costal region 2) by the locations where the sites are. Experiments were designed according to the location of observational stations and MM5/CALPUFF was used. The results of numerical simulation of atmospheric flow fields are used as input data for CALPUFF which predicts dispersion fields of air pollutants. The result of this study indicated that data assimilation using data in the far coastal region 2 provided an attractive method for generating realistic meteorological fields and dispersion fields of air pollutants in Gwangyang area because data in the near coastal region are variable and narrow representation.

복잡한 해안지역에서의 지상 관측 자료를 이용한 대기 유동장 수치모의 (Numerical Simulation of Atmospheric Flow Fields Using Surface Observational Data in the Complex Coastal Regions)

  • 이화운;원혜영;최현정
    • 한국대기환경학회지
    • /
    • 제20권5호
    • /
    • pp.633-645
    • /
    • 2004
  • A critical component of air pollution modeling is the representation of meteorological fields within a model domain, since an accurate air quality simulation requires an accurate portrayal of the three-dimensional wind fields. The present study investigated data assimilation using surface observational data in the complex coastal regions to simulate an accurate meteorological fields. Surface observational data were categorized into three groups(Near coastal region, Far coastal regiln 1, Far costal region 2) by the locations where the data are. Experiments were designed and MM5 was used in each case of regions. Case 1 is an experiment without data assimilation, Case N is executed with data assimilation using observational data by meteorological stations and AWS data located in the near coastal region, within 1 km. Case F1 is also an experiment with data assimilation using observational data by meteorological stations and AWS data located in the far coastal regiln 1, more than 1km and less than 5km from the coastal lines. Case F2 is appled to data assimilation using observational data by meteorological stations and AWS data located in the far coastal region 2, beyond 5km from the coastal lines. The result of this study indicated that data assimilation using data in the far coastal region 1 and 2 provided an attractive method for generating accurate meteorological fields, especially in the complex coastal regions.

Kuroshio Observation Program: Towards Real-Time Monitoring the Japanese Coastal Waters

  • Ostrovskii, Alexander;Kaneko, Arata;Stuart-Menteth, Alice;Takeuchi, Kensuke;Yamagata, Toshio;Park, Jae-Hun;Zhu, Xiao Hua;Gohda, Noriaki;Ichikawa, Hiroshi;Ichikawa, Kaoru;Isobe, Atsuhiko;Konda, Masanori;Umatani, Shin-Ichiro
    • Ocean and Polar Research
    • /
    • 제23권2호
    • /
    • pp.141-160
    • /
    • 2001
  • The challenge of predicting the Japanese coastal ocean motivated Frontier Observational Research System for Global Change (FORSGC) and the Japan Marine Science and Technology Center (JAMSTEC) to start a multiyear observational programme in the upstream Kuroshio in November 2000. This field effort, the Kuroshio Observation Program (KOP), should enable us to determine the barotropic and baroclinic components of the western boundary current system, thus, to better understand interactions of the currents with mesoscale eddies, the Kuroshio instabilities, and path bimodality. We, then, will be able to improve modeling predictability of the mesoscale, seasonal, and inter-annual processes in the midstream Kuroshio near the Japanese main islands by using this knowledge. The KOP is focused on an enhanced regional coverage of the sea surface height variability and the baroclinic structure of the mainstream Kuroshio in the East China Sea, the Ryukyu Current east of the Ryukyu's, and the Kuroshio recirculation. An attractive approach of the KOP is a development of a new data acquisition system via acoustic telemetry of the observational data. The monitoring system will provide observations for assimilation into extensive numerical models of the ocean circulation, targeting the real-time monitoring of the Japanese coastal waters.

  • PDF

유비쿼터스 환경에서의 유사도 기반 곤충 종 추론검색시스템 (A Similarity-based Inference System for Identifying Insects in the Ubiquitous Environments)

  • 전응섭;장용식;권영대;김용남
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권3호
    • /
    • pp.175-187
    • /
    • 2011
  • 곤충 종은 환경생태학적 종 다양성 보존과 국가적 생물자원 활용전략 관점에서 중요한 역할을 하기 때문에 생태계의 주요 구성요소로 인식되고 있다. 곤충 종 보존과 육성을 위해서는 곤충전문가는 물론 곤충비전문가인 일반인과 학생들도 곤충에 관심을 가질 수 있는 곤충관찰학습 환경이 요구된다. 그러므로, 곤충식별은 관찰학습에 있어서 주요학습의 동기유발 요인이 된다. 현재 서비스하고 있는 온라인 곤충 종 분류검색시스템은 시간 소모적이며, 곤충 종에 대한 지식이 부족한 일반인들이 곤충식별의 도구로 사용하기에는 많은 노력을 요구하기 때문에 비효율적이다. 본 연구에서는 이러한 문제를 해결하기 위하여, 일반인들이 자연 생태계에서 관찰한 내용을 바탕으로 곤충식별을 도와주는 스마트폰 기반의 유러닝시스템인 곤충 종 식별추론 시스템을 제안하였다. 본 시스템은 사용자의 곤충관찰정보와 생물학적 곤충특성과의 유사도에 기반하여 추론검색을 수행한다. 이를 위해, 생물학적 곤충특성을 목, 과, 종 단위의 27개 항목으로 분류하고, 관찰 단계별 유사도 지표를 제안하였다. 또한, 본 연구의 유용성을 보이기 위하여 추론검색 프로토타입시스템을 개발하고, 기존의 분류검색시스템과의 곤충식별 비교테스트를 하였다. 실험결과, 본 연구의 추론검색 방법이 곤충식별의 효과성에 있어 더 우수함을 보였고, 검색시간에 있어서도 보다 효율적인 시스템이 될 수 있음을 보였다.

도시지역 유인관측소 일조 관측환경 평가 모델 개발 (Development of Observational Environment Evaluation Model for Sunshine Duration at ASOSs Located in Urban Areas)

  • 김도용;김도형;김재진
    • 대기
    • /
    • 제23권3호
    • /
    • pp.275-282
    • /
    • 2013
  • In this study, the numerical model was developed to evaluate the observational environment of sunshine duration and, for evaluating the accuracy and utility of the model, it was verified against the observational data measured at Dae-gu Automated Synoptic Observing System (ASOS) located in an urban area. Three-dimensional topography and building configuration as the surface input data of the model were constructed using a Geographic Information System (GIS) data. First, the accuracy of the computing planetary positions suggested by Paul Schlyter was verified against the data provided by Korea Astronomy and Space Science Institute (KASI) and the results showed that the numerical model predicted the Sun's position (the solar azimuth and altitude angles) quite precisely. Then, this model was applied to reproduce the sunshine duration at the Dae-gu ASOS. The observed and calculated sunshine durations were similar to each other. However, the observed and calculated sunrise (sunset) times were delayed (curtailed), compared to those provided by KASI that considered just the ASOS's position information such as latitude, longitude, and elevation height but did not consider the building and topography information. Further investigation showed that this was caused by not only the topographic characteristic (higher in the east and lower in the west) but also the buildings located in the southeast near the sunrise and the southwest near the sunset. It was found that higher building resolution increased the accuracy of the model. It was concluded that, for the accurate evaluation of the sunshine duration, detailed building and topography information around the observing sites was required and the numerical model developed in this study was successful to predict and/or the sunshine duration of the ASOS located in an urban area.

천체 망원경의 자동화 : I. 컴퓨터 제어와 자동 관측을 위한 기본 설계 및 하드웨어의 제작

  • 강용우;이형목;윤갑수
    • 천문학논총
    • /
    • 제6권1호
    • /
    • pp.62-75
    • /
    • 1991
  • The small sized telescope can be best used if the control and observation can be made remotely and fully automatically by the aid of computers. We discuss the possible ways of automating the existing telescopes of various designs using personal computers. 'We have specifically designed the parts necessary to automate 16 inch Cassegrain Telescope at Pusan University Observatory. The degree of automation we have set for the present work is the interactive. remote observation including opening and shutting down of dome slit. The observational modes we have in mind are photoelectric photometry and CCD imaging. The basic components of the hardware are interface card for 16 or 32 bit IBM PC family of computers, relay switches for the control of telescope movements, stepping motor controller card for the control of observational equipments, and AID converter unit that accepts signal from sensors for the environment conditions such as temperature, wind speeds, precipitation, etc. We also have designed and built a photoelectric photometer that can be fully controlled by the command of a computer. Such observational equipment is also essential in order that the remote observation can be realized.

  • PDF

도시기상 관측을 위한 메타데이터의 표준화 (Standardization of Metadata for Urban Meteorological Observations)

  • 송윤영;채정훈;최민혁;박문수;최영진
    • 한국대기환경학회지
    • /
    • 제30권6호
    • /
    • pp.600-618
    • /
    • 2014
  • The metadata for urban meteorological observation is standardized through comparison with those established at the World Meteorological Organization and the Korea Meteorological Administration to understand the surrounding environment around the sites exactly and maintain the networks and sites efficiently. It categorizes into metadata for an observational network and observational sites. The latter is again divided into the metadata for station general information, local scale information, micro scale information, and visual information in order to explain urban environment in detail. The metadata also contains the static information such as urban structure, surface cover, metabolism, communication, building density, roof type, moisture/heat sources, and traffic as well as the update information on the environment change, maintenance, replacement, and/or calibration of sensors. The standardized metadata for urban meteorological observation is applied to the Weather Information Service Engine (WISE) integrated meteorological sensor network and sites installed at Incheon area. It will be very useful for site manager as well as researchers in fields of urban meteorology, radiation, surface energy balance, anthropogenic heat, turbulence, heat storage, and boundary layer processes.

국지규모 풍력에너지 평가를 위한 기상 관측 자료의 영향 반경 특성 (Characteristics of Efficient Radius of Meteorological Observation Data to Estimate Regional Wind Energy)

  • 이순환;김민정;이화운
    • 한국대기환경학회지
    • /
    • 제23권5호
    • /
    • pp.585-595
    • /
    • 2007
  • Representative impacts and effectiveness of surface meteorological observation data assimilation were examined in order to use wind resources estimation around southern coastal area of the Korean Peninsula. The data used in study are observational wind and temperature data at 5 and 41 sites of Regional Meteorological Offices and Automatical Weather Systems, respectively. Observation wind speed data tends to show small effective radius with limited area. Especially assimilation impacts of data observed at peninsula type sites like Yeosu play only around the inside of the peninsula. This limited effective radius for wind speed is caused by the strong correlation between topography and wind speed. And the efficient radius for surface air temperature is larger than that of wind. Data assimilation for observational air temperature is useful to increase the accuracy of wind energy estimation. However assimilation of wind data requires special care in its application due to high sensitivity of topographical complexity.

수치표고모델과 태양복사모델을 이용한 기상청 일사 관측소 관측환경 분석 (An Analysis of Observational Environments for Solar Radiation Stations of Korea Meteorological Administration using the Digital Elevation Model and Solar Radiation Model)

  • 지준범;조일성;김부요;이규태
    • 한국지구과학회지
    • /
    • 제40권2호
    • /
    • pp.119-134
    • /
    • 2019
  • 기상청 일사관측소 관측환경 분석을 위하여 수치표고모델(DEM)과 태양복사모델을 이용하여 주변지형에 의한 차폐와 하늘시계요소(SVF) 및 일사량을 산출하였다. 지형고도자료(10 m 해상도)를 통해 관측소를 중심으로 주변 25 km내의 지형들을 이용하여 스카이라인과 SVF를 계산하였다. 또한, 일사관측소별 산출된 천기도와 스카이라인을 중첩하여 지형에 의한 차폐를 분석하였다. 특히 인천 관측소는 주변지형의 차폐가 적었고 청송군과 추풍령 관측소는 주변 지형에 의한 차폐가 큰 관측소로 나타났다. 태양복사모델을 이용하여 동일 조건에서 지형 특성에 따른 일사량을 산출하여 지형에 의한 기여도를 분석하였다. 연누적 일사량 계산결과, 청송군 관측소의 경우 수평면 일사량과 비교하였을 때 직달일사량은 12.0% 이상 차폐되었고 산란일사량은 5.6% 그리고 전천일사량은 4.7% 감소하였다. 평균 일누적 일사량을 기준으로 편차를 분석하였을 때 0.3% 이상 전천일사량이 감소되는 지점은 6개 관측소였다. 42개 관측소 중 8소는 관측소의 이전 또는 관측장비의 이동설치가 시급한 것으로 분석되었고 1/2 이상(24소)의 관측소는 일사관측환경에 대한 검토가 필요한 것으로 분석되었다. DEM자료는 관측소 주변의 인공구조물과 식생 등이 포함되지 않기 때문에 더 상세한 관측환경분석이 요구된다.