• Title/Summary/Keyword: object-based approach

Search Result 876, Processing Time 0.03 seconds

Designing a Reinforcement Learning-Based 3D Object Reconstruction Data Acquisition Simulation (강화학습 기반 3D 객체복원 데이터 획득 시뮬레이션 설계)

  • Young-Hoon Jin
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.6
    • /
    • pp.11-16
    • /
    • 2023
  • The technology of 3D reconstruction, primarily relying on point cloud data, is essential for digitizing objects or spaces. This paper aims to utilize reinforcement learning to achieve the acquisition of point clouds in a given environment. To accomplish this, a simulation environment is constructed using Unity, and reinforcement learning is implemented using the Unity package known as ML-Agents. The process of point cloud acquisition involves initially setting a goal and calculating a traversable path around the goal. The traversal path is segmented at regular intervals, with rewards assigned at each step. To prevent the agent from deviating from the path, rewards are increased. Additionally, rewards are granted each time the agent fixates on the goal during traversal, facilitating the learning of optimal points for point cloud acquisition at each traversal step. Experimental results demonstrate that despite the variability in traversal paths, the approach enables the acquisition of relatively accurate point clouds.

Markerless camera pose estimation framework utilizing construction material with standardized specification

  • Harim Kim;Heejae Ahn;Sebeen Yoon;Taehoon Kim;Thomas H.-K. Kang;Young K. Ju;Minju Kim;Hunhee Cho
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.535-544
    • /
    • 2024
  • In the rapidly advancing landscape of computer vision (CV) technology, there is a burgeoning interest in its integration with the construction industry. Camera calibration is the process of deriving intrinsic and extrinsic parameters that affect when the coordinates of the 3D real world are projected onto the 2D plane, where the intrinsic parameters are internal factors of the camera, and extrinsic parameters are external factors such as the position and rotation of the camera. Camera pose estimation or extrinsic calibration, which estimates extrinsic parameters, is essential information for CV application at construction since it can be used for indoor navigation of construction robots and field monitoring by restoring depth information. Traditionally, camera pose estimation methods for cameras relied on target objects such as markers or patterns. However, these methods, which are marker- or pattern-based, are often time-consuming due to the requirement of installing a target object for estimation. As a solution to this challenge, this study introduces a novel framework that facilitates camera pose estimation using standardized materials found commonly in construction sites, such as concrete forms. The proposed framework obtains 3D real-world coordinates by referring to construction materials with certain specifications, extracts the 2D coordinates of the corresponding image plane through keypoint detection, and derives the camera's coordinate through the perspective-n-point (PnP) method which derives the extrinsic parameters by matching 3D and 2D coordinate pairs. This framework presents a substantial advancement as it streamlines the extrinsic calibration process, thereby potentially enhancing the efficiency of CV technology application and data collection at construction sites. This approach holds promise for expediting and optimizing various construction-related tasks by automating and simplifying the calibration procedure.

Thermal imaging and computer vision technologies for the enhancement of pig husbandry: a review

  • Md Nasim Reza;Md Razob Ali;Samsuzzaman;Md Shaha Nur Kabir;Md Rejaul Karim;Shahriar Ahmed;Hyunjin Kyoung;Gookhwan Kim;Sun-Ok Chung
    • Journal of Animal Science and Technology
    • /
    • v.66 no.1
    • /
    • pp.31-56
    • /
    • 2024
  • Pig farming, a vital industry, necessitates proactive measures for early disease detection and crush symptom monitoring to ensure optimum pig health and safety. This review explores advanced thermal sensing technologies and computer vision-based thermal imaging techniques employed for pig disease and piglet crush symptom monitoring on pig farms. Infrared thermography (IRT) is a non-invasive and efficient technology for measuring pig body temperature, providing advantages such as non-destructive, long-distance, and high-sensitivity measurements. Unlike traditional methods, IRT offers a quick and labor-saving approach to acquiring physiological data impacted by environmental temperature, crucial for understanding pig body physiology and metabolism. IRT aids in early disease detection, respiratory health monitoring, and evaluating vaccination effectiveness. Challenges include body surface emissivity variations affecting measurement accuracy. Thermal imaging and deep learning algorithms are used for pig behavior recognition, with the dorsal plane effective for stress detection. Remote health monitoring through thermal imaging, deep learning, and wearable devices facilitates non-invasive assessment of pig health, minimizing medication use. Integration of advanced sensors, thermal imaging, and deep learning shows potential for disease detection and improvement in pig farming, but challenges and ethical considerations must be addressed for successful implementation. This review summarizes the state-of-the-art technologies used in the pig farming industry, including computer vision algorithms such as object detection, image segmentation, and deep learning techniques. It also discusses the benefits and limitations of IRT technology, providing an overview of the current research field. This study provides valuable insights for researchers and farmers regarding IRT application in pig production, highlighting notable approaches and the latest research findings in this field.

CNN-ViT Hybrid Aesthetic Evaluation Model Based on Quantification of Cognitive Features in Images (이미지의 인지적 특징 정량화를 통한 CNN-ViT 하이브리드 미학 평가 모델)

  • Soo-Eun Kim;Joon-Shik Lim
    • Journal of IKEEE
    • /
    • v.28 no.3
    • /
    • pp.352-359
    • /
    • 2024
  • This paper proposes a CNN-ViT hybrid model that automatically evaluates the aesthetic quality of images by combining local and global features. In this approach, CNN is used to extract local features such as color and object placement, while ViT is employed to analyze the aesthetic value of the image by reflecting global features. Color composition is derived by extracting the primary colors from the input image, creating a color palette, and then passing it through the CNN. The Rule of Thirds is quantified by calculating how closely objects in the image are positioned near the thirds intersection points. These values provide the model with critical information about the color balance and spatial harmony of the image. The model then analyzes the relationship between these factors to predict scores that align closely with human judgment. Experimental results on the AADB image database show that the proposed model achieved a Spearman's Rank Correlation Coefficient (SRCC) of 0.716, indicating more consistent rank predictions, and a Pearson Correlation Coefficient (LCC) of 0.72, which is 2~4% higher than existing models.

A Product Model Centered Integration Methodology for Design and Construction Information (프로덕트 모델 중심의 설계, 시공 정보 통합 방법론)

  • Lee Keun-Hyoung;Kim Jae-Jun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.99-106
    • /
    • 2002
  • Researches on integration of design and construction information from earlier era focused on the conceptual data models. Development and prevalent use of commercial database management system led many researchers to design database schemas for enlightening of relationship between non-graphic data items. Although these researches became the foundation fur the proceeding researches. they did not utilize the graphic data providable from CAD system which is already widely used. 4D CAD concept suggests a way of integrating graphic data with schedule data. Although this integration provided a new possibility for integration, there exists a limitation in data dependency on a specific application. This research suggests a new approach on integration for design and construction information, 'Product Model Centered Integration Methodology'. This methodology achieves integration by preliminary research on existing methodology using 4D CAD concept. and by development and application of new integration methodology, 'Product Model Centered Integration Methodology'. 'Design Component' can be converted into digital format by object based CAD system. 'Unified Object-based Graphic Modeling' shows how to model graphic product model using CAD system. Possibility of reusing design information in latter stage depends on the ways of creating CAD model, so modeling guidelines and specifications are suggested. Then prototype system for integration management, and exchange are presented, using 'Product Frameworker', and 'Product Database' which also supports multiple-viewpoints. 'Product Data Model' is designed, and main data workflows are represented using 'Activity Diagram', one of UML diagrams. These can be used for writing programming codes and developing prototype in order to automatically create activity items in actual schedule management system. Through validation processes, 'Product Model Centered Integration Methodology' is suggested as the new approach for integration of design and construction information.

  • PDF

Normalization of Face Images Subject to Directional Illumination using Linear Model (선형모델을 이용한 방향성 조명하의 얼굴영상 정규화)

  • 고재필;김은주;변혜란
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.1
    • /
    • pp.54-60
    • /
    • 2004
  • Face recognition is one of the problems to be solved by appearance based matching technique. However, the appearance of face image is very sensitive to variation in illumination. One of the easiest ways for better performance is to collect more training samples acquired under variable lightings but it is not practical in real world. ]:n object recognition, it is desirable to focus on feature extraction or normalization technique rather than focus on classifier. This paper presents a simple approach to normalization of faces subject to directional illumination. This is one of the significant issues that cause error in the face recognition process. The proposed method, ICR(illumination Compensation based on Multiple Linear Regression), is to find the plane that best fits the intensity distribution of the face image using the multiple linear regression, then use this plane to normalize the face image. The advantages of our method are simple and practical. The planar approximation of a face image is mathematically defined by the simple linear model. We provide experimental results to demonstrate the performance of the proposed ICR method on public face databases and our database. The experimental results show a significant improvement of the recognition accuracy.

Discriminant Analysis of Human's Implicit Intent based on Eyeball Movement (안구운동 기반의 사용자 묵시적 의도 판별 분석 모델)

  • Jang, Young-Min;Mallipeddi, Rammohan;Kim, Cheol-Su;Lee, Minho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.212-220
    • /
    • 2013
  • Recently, there has been tremendous increase in human-computer/machine interaction system, where the goal is to provide with an appropriate service to the user at the right time with minimal human inputs for human augmented cognition system. To develop an efficient human augmented cognition system based on human computer/machine interaction, it is important to interpret the user's implicit intention, which is vague, in addition to the explicit intention. According to cognitive visual-motor theory, human eye movements and pupillary responses are rich sources of information about human intention and behavior. In this paper, we propose a novel approach for the identification of human implicit visual search intention based on eye movement pattern and pupillary analysis such as pupil size, gradient of pupil size variation, fixation length/count for the area of interest. The proposed model identifies the human's implicit intention into three types such as navigational intent generation, informational intent generation, and informational intent disappearance. Navigational intent refers to the search to find something interesting in an input scene with no specific instructions, while informational intent refers to the search to find a particular target object at a specific location in the input scene. In the present study, based on the human eye movement pattern and pupillary analysis, we used a hierarchical support vector machine which can detect the transitions between the different implicit intents - navigational intent generation to informational intent generation and informational intent disappearance.

Design of IoT Gateway based Event-Driven Architecture for Intelligent Buildings. (IoT 게이트웨이 기반 지능형 건물의 이벤트 중심 아키텍쳐 설계)

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.256-259
    • /
    • 2016
  • The growth of mobile devices in Internet of Things (IoT) leads to a number of intelligent buildings related IoT applications. For instance, home automation controlling system uses client system such web apps on smartphone or web service to access the home server by sending control commands. The home server receives the command, then controls for instance the light system. The gateway based RESTful technology responsible for handling clients' requests attests an internet latency in case a large number of clients' requests submit toward the gateway increases. In this paper, we propose the design tasks of the IoT gateway for handling concurrency events. In the procedure of designing tasks, concurrency is best understood by employing multiple levels of abstraction. The way that is eminently to accomplish concurrency is to build an object-oriented environment with support for messages passing between concurrent objects. We also investigate the performance of event-driven architecture for building IoT gateway using node.js on one side and communication protocol based message-oriented middleware known as XMPP to handle communications of intelligent building control devices connected to the gateway through a centralized hub. The Node.JS is 40% faster than the traditional web server side features thread-based approach. The use of Node.js server-side handles a large number of clients' requests, then therefore, reduces delay in performing predefined actions automatically in intelligent building IoT environment.

  • PDF

Natural, Nature-based Features (NNbF) - A Comparative Analysis with Nature-based Solutions (NbS) and Assessment of Its Applicability to Korea (자연/자연기반 특징(NNbF) - 자연기반해법(NbS)과 비교분석 및 국내적용성 평가)

  • Hyoseop Woo
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.2
    • /
    • pp.31-39
    • /
    • 2023
  • NNbF is a newly emerging approach to reduce flood risk in coastal and fluvial areas using natural features or engineered nature-based features with the expectation of co-benefits of provisional, regulating, and socio-cultural services provided by the ecosystem. NNbF is not quite different from existing, related terms based on nature, such as NbS, Eco-DRR, NI, GI, EwN, and BwN, for all these terms include expectation of benefits for human societies by directly utilizing or mimicking nature's ecological functions. If we focus on the comprehensiveness of each term's subject and object, we can say that NbS > NNbF > (Eco-DRR, NI/GI). Among the 18 measures introduced in the NNbF International Guideline in the river and floodplain management category, it was found that measures of wash lands and floodplain restoration, including levee setback/removal and side-channel restoration, seemed to be the most applicable to rivers in Korea. These selected measures could be more effective when river managers purchase riparian lands along river courses by relevant laws for river water-quality protection.

A Projection-based Intensity Correction Method of Phased-Array Coil Images (위상 배열 코일 영상에서의 밝기 비균등성을 projection에 기반하여 수정하는 방법)

  • Yun SungDae;Chung Jun-Young;Han YeJi;Park HyunWook
    • Investigative Magnetic Resonance Imaging
    • /
    • v.9 no.1
    • /
    • pp.36-42
    • /
    • 2005
  • Purpose : To develop a novel approach to calculate the sensitivity profiles of the phased array coil for use in non-uniform intensity correction. Materials and Methods : The proposed intensity correction method estimates the sensitivity profile of the coil to extract intensity variations that represent the scanned image. The sensitivity profile is estimated by fitting a non-linear curve to various angles of projections through the imaged object in order to eliminate the high-frequency image content. Filtered back projection is then used to compute the estimates of the sensitivity profile of each coil. The method was applied both to phantom and brain images from 8-channel phased-array coil and 4-channel phased-array coil, respectively. Results : Intensity-corrected images from the proposed method have more uniform intensity than those from the commonly used 'sum-of-squares' approach. By using the proposed correction method, the intensity variation was reduced to $6.1\%$ from $13.1\%$, acquired from the 'sum-of-squares'. Conclusion : The proposed method is more effective at correcting the intensity non-uniformity of the phased-array surface-coil images than the conventional 'sum-of-squares' method.

  • PDF