• Title/Summary/Keyword: object matching

Search Result 644, Processing Time 0.029 seconds

Implementation of Trump Card Detection and Identification using Template Matching (템플릿 매칭을 이용한 트럼프 카드 검출 및 인식 구현)

  • Lee, Yong-Hwan;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.112-115
    • /
    • 2020
  • Trump cards are used in variable games in households such as poker and blackjack. In many cases, it is able to be helpful to algorithmically identify the playing cards from camera views. In this paper, we provide an approach that detects and identifies the playing card using template matching scheme, and evaluate the results of the provided implementation. For ideal cases, the implemented system provides a 100% success rate for card identification correct. However, non-ideal case of perspective distortion is estimated with 70% success ratio. This work aims to evaluate the effectiveness of augmented reality user interface for an entertainment application like playing card games.

A Study on Fast Matching of Binary Feature Descriptors through Sequential Analysis of Partial Hamming Distances (부분 해밍 거리의 순차적 분석을 통한 이진 특징 기술자의 고속 정합에 관한 연구)

  • Park, Hanhoon;Moon, Kwang-Seok
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.4
    • /
    • pp.217-221
    • /
    • 2013
  • Recently, researches for methods of generating binary feature descriptors have been actively done. Since matching of binary feature descriptors uses Hamming distance which is based on bit operations, it is much more efficient than that of previous general feature descriptors which uses Euclidean distance based on real number operations. However, since increase in the number of features linearly drops matching speed, in applications such as object tracking where real-time applicability is a must, there has been an increasing demand for methods of further improving the matching speed of binary feature descriptors. In this regard, this paper proposes a method that improves the matching speed greatly while maintaining the matching accuracy by splitting high dimensional binary feature descriptors to several low dimensional ones and sequentially analyzing their partial Hamming distances. To evaluate the efficiency of the proposed method, experiments of comparison with previous matching methods are conducted. In addition, this paper discusses schemes of generating binary feature descriptors for maximizing the performance of the proposed method. Based on the analysis on the performance of several generation schemes, we try to find out the most effective scheme.

Hybrid Schema Matching (HSM): Schema Matching Algorithm for Integrating Geographic Information (Hybrid Schema Matching (HSM): 지리정보 통합을 위한 하이브리드 스키마 매칭 알고리즘)

  • Lee, Jiyoon;Lee, Sukhoon;Kim, Jangwon;Jeong, Dongwon;Baik, Doo-Kwon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.3
    • /
    • pp.173-186
    • /
    • 2013
  • Web-based map services provide various geographic information that users want to get by continuous updating of data. Those map services provide different information for a geographic object respectively. It causes several problems, and most of all various information cannot be integrated and provided. To resolve the problem, this paper proposes a system which can integrate diverse geographic information and provide users rich geographic information. In this paper, a hybrid schema matching (HSM) algorithm is proposed and the algorithm is a mixture of the adapter-based semantic processing method, static semantic management-based approach, and dynamic semantic management-based approach. A comparative evaluation is described to show effectiveness of the proposed algorithm. The proposed algorithm in this paper improves the accuracy of schema matching because of registration and management of schemas of new semantic information. The proposal enables vocabulary-based schema matching using various schemas, and it thus also supports high usability. Finally, the proposed algorithm is cost-effective by providing the progressive extension of relationships between schema meanings.

Two-dimensional Automatic Transformation Template Matching for Image Recognition (영상 인식을 위한 2차원 자동 변형 템플릿 매칭)

  • Han, Young-Mo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.1-6
    • /
    • 2019
  • One method for image recognition is template matching. In conventional template matching, the block matching algorithm (BMA) is performed while changing the two-dimensional translational displacement of the template within a given matching image. The template size and shape do not change during the BMA. Since only two-dimensional translational displacement is considered, the success rate decreases if the size and direction of the object do not match in the template and the matching image. In this paper, a variable is added to adjust the two-dimensional direction and size of the template, and the optimal value of the variable is automatically calculated in the block corresponding to each two-dimensional translational displacement. Using the calculated optimal value, the template is automatically transformed into an optimal template for each block. The matching error value of each block is then calculated based on the automatically deformed template. Therefore, a more stable result can be obtained for the difference in direction and size. For ease of use, this study focuses on designing the algorithm in a closed form that does not require additional information beyond the template image, such as distance information.

User-friendly 3D Object Reconstruction Method based on Structured Light in Ubiquitous Environments (유비쿼터스 환경에서 구조광 기반 사용자 친화적 3차원 객체 재구성 기법)

  • Jung, Sei-Hwa;Lee, Jeongjin
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.11
    • /
    • pp.523-532
    • /
    • 2013
  • Since conventional methods for the reconstruction of 3D objects used a number of cameras or pictures, they required specific hardwares or they were sensitive to the photography environment with a lot of processing time. In this paper, we propose a 3D object reconstruction method using one photograph based on structured light in ubiquitous environments. We use color pattern of the conventional method for structured light. In this paper, we propose a novel pipeline consisting of various image processing techniques for line pattern extraction and matching, which are very important for the performance of the object reconstruction. And we propose the optimal cost function for the pattern matching. Using our method, it is possible to reconstruct a 3D object with efficient computation and easy setting in ubiquitous or mobile environments, for example, a smartphone with a subminiature projector like Galaxy Beam.

3D Shape Reconstruction of Non-Lambertian Surface (Non-Lambertian면의 형상복원)

  • 김태은;이말례
    • Journal of Korea Multimedia Society
    • /
    • v.1 no.1
    • /
    • pp.26-36
    • /
    • 1998
  • It is very important study field in computer vision 'How we obtain 3D information from 2D image'. For this purpose, we must know position of camera, direction of light source, and surface reflectance property before we take the image, which are intrinsic information of the object in the scene. Among them, surface reflectance property presents very important clues. Most previous researches assume that objects have only Lambertian reflectance, but many real world objects have Non-Lambertian reflectance property. In this paper the new method for analyzing the properties of surface reflectance and reconstructing the shape of object through estimation of reflectance parameters is proposed. We have interest in Non-Lambertian reflectance surface that has specular reflection and diffuse reflection which can be explained by Torrance-Sparrow model. Photometric matching method proposed in this paper is robust method because it match reference image and object image considering the neighbor brightness distribution. Also in this thesis, the neural network based shaped reconstruction method is proposed, which can be performed in the absence of reflectance information. When brightness obtained by each light is inputted, neural network is trained by surface normal and can determine the surface shape of object.

  • PDF

Shot Boundary Detection Algorithm by Compensating Pixel Brightness and Object Movement (화소 밝기와 객체 이동을 이용한 비디오 샷 경계 탐지 알고리즘)

  • Lee, Joon-Goo;Han, Ki-Sun;You, Byoung-Moon;Hwang, Doo-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.5
    • /
    • pp.35-42
    • /
    • 2013
  • Shot boundary detection is an essential step for efficient browsing, sorting, and classification of video data. Robust shot detection method should overcome the disturbances caused by pixel brightness and object movement between frames. In this paper, two shot boundary detection methods are presented to address these problem by using segmentation, object movement, and pixel brightness. The first method is based on the histogram that reflects object movements and the morphological dilation operation that considers pixel brightness. The second method uses the pixel brightness information of segmented and whole blocks between frames. Experiments on digitized video data of National Archive of Korea show that the proposed methods outperforms the existing pixel-based and histogram-based methods.

Region Segmentation Algorithm of Object Using Self-Extraction of Reference Template (기준 템플릿의 자동 생성 기법을 이용한 물체 영역 분할 알고리즘)

  • Lee, Gyoon-Jung;Lee, Dong-Won;Joo, Jae-Heum;Bae, Jong-Gab;Nam, Ki-Gon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.1
    • /
    • pp.7-12
    • /
    • 2011
  • In this paper, we propose the technique detecting interest object region effectively in the images from periscope of submarine based on self-generated template. First, we extract the sea-sky line, and divide it into sky and sea area from background region based on the sea-sky line. In each divided background region, the blocks which can be represented in each background region are set as a reference template. After dividing an image into several same size of blocks, we apply multi template matching to the divided search blocks and histogram template to divide the image into object region and background region. Proposed algorithm is adapted to various images in which objects exist in the background of sea and sky. We verified that proposed algorithm performed properly without given informmed prby prior learning.ropso, regardless of the slope of sea-sky line and the locmed p of object based on sea-sky line, we verified that the objects region was segmented effectively from the input image.

Object Recogniton for Markerless Augmented Reality Embodiment (마커 없는 증강 현실 구현을 위한 물체인식)

  • Paul, Anjan Kumar;Lee, Hyung-Jin;Kim, Young-Bum;Islam, Mohammad Khairul;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.1
    • /
    • pp.126-133
    • /
    • 2009
  • In this paper, we propose an object recognition technique for implementing marker less augmented reality. Scale Invariant Feature Transform (SIFT) is used for finding the local features from object images. These features are invariant to scale, rotation, translation, and partially invariant to illumination changes. Extracted Features are distinct and have matched with different image features in the scene. If the trained image is properly matched, then it is expected to find object in scene. In this paper, an object is found from a scene by matching the template images that can be generated from the first frame of the scene. Experimental results of object recognition for 4 kinds of objects showed that the proposed technique has a good performance.

  • PDF

Moving Object Tracking in UAV Video using Motion Estimation (움직임 예측을 이용한 무인항공기 영상에서의 이동 객체 추적)

  • Oh, Hoon-Geol;Lee, Hyung-Jin;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.4
    • /
    • pp.400-405
    • /
    • 2006
  • In this paper, we propose a moving object tracking algorithm by using motion estimation in UAV(Unmanned Aerial Vehicle) video. Proposed algorithm is based on generation of initial image from detected reference image, and tracking of moving object under the time-varying image. With a series of this procedure, tracking process is stable even when the UAV camera sways by correcting position of moving object, and tracking time is relatively reduced. A block matching algorithm is also utilized to determine the similarity between reference image and moving object. An experimental result shows that our proposed algorithm is better than the existing full search algorithm.

  • PDF