• Title/Summary/Keyword: object features

Search Result 1,186, Processing Time 0.024 seconds

On the Study of Rotation Invariant Object Recognition (회전불변 객체 인식에 관한 연구)

  • Alom, Md. Zahangir;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.04a
    • /
    • pp.405-408
    • /
    • 2010
  • This paper presents a new feature extraction technique, correlation coefficient and Manhattan distance (MD) based method for recognition of rotated object in an image. This paper also represented a new concept of intensity invariant. We extracted global features of an image and converts a large size image into a one-dimensional vector called circular feature vector's (CFVs). An especial advantage of the proposed technique is that the extracted features are same even if original image is rotated with rotation angles 1 to 360 or rotated. The proposed technique is based on fuzzy sets and finally we have recognized the object by using histogram matching, correlation coefficient and manhattan distance of the objects. The proposed approach is very easy in implementation and it has implemented in Matlab7 on Windows XP. The experimental results have demonstrated that the proposed approach performs successfully on a variety of small as well as large scale rotated images.

Detection of Multiple Salient Objects by Categorizing Regional Features

  • Oh, Kang-Han;Kim, Soo-Hyung;Kim, Young-Chul;Lee, Yu-Ra
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.272-287
    • /
    • 2016
  • Recently, various and effective contrast based salient object detection models to focus on a single target have been proposed. However, there is a lack of research on detection of multiple objects, and also it is a more challenging task than single target process. In the multiple target problem, we are confronted by new difficulties caused by distinct difference between properties of objects. The characteristic of existing models depending on the global maximum distribution of data point would become a drawback for detection of multiple objects. In this paper, by analyzing limitations of the existing methods, we have devised three main processes to detect multiple salient objects. In the first stage, regional features are extracted from over-segmented regions. In the second stage, the regional features are categorized into homogeneous cluster using the mean-shift algorithm with the kernel function having various sizes. In the final stage, we compute saliency scores of the categorized regions using only spatial features without the contrast features, and then all scores are integrated for the final salient regions. In the experimental results, the scheme achieved superior detection accuracy for the SED2 and MSRA-ASD benchmarks with both a higher precision and better recall than state-of-the-art approaches. Especially, given multiple objects having different properties, our model significantly outperforms all existing models.

A Real-time Indoor Place Recognition System Using Image Features Detection (영상 특징 검출 기반의 실시간 실내 장소 인식 시스템)

  • Song, Bok-Deuk;Shin, Bum-Joo;Yang, Hwang-Kyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.1
    • /
    • pp.76-83
    • /
    • 2012
  • In a real-time indoor place recognition system using image features detection, specific markers included in input image should be detected exactly and quickly. However because the same markers in image are shown up differently depending to movement, direction and angle of camera, it is required a method to solve such problems. This paper proposes a technique to extract the features of object without regard to change of the object scale. To support real-time operation, it adopts SURF(Speeded up Robust Features) which enables fast feature detection. Another feature of this system is the user mark designation which makes possible for user to designate marks from input image for location detection in advance. Unlike to use hardware marks, the feature above has an advantage that the designated marks can be used without any manipulation to recognize location in input image.

Content-Based Image Retrieval System using Feature Extraction of Image Objects (영상 객체의 특징 추출을 이용한 내용 기반 영상 검색 시스템)

  • Jung Seh-Hwan;Seo Kwang-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.3
    • /
    • pp.59-65
    • /
    • 2004
  • This paper explores an image segmentation and representation method using Vector Quantization(VQ) on color and texture for content-based image retrieval system. The basic idea is a transformation from the raw pixel data to a small set of image regions which are coherent in color and texture space. These schemes are used for object-based image retrieval. Features for image retrieval are three color features from HSV color model and five texture features from Gray-level co-occurrence matrices. Once the feature extraction scheme is performed in the image, 8-dimensional feature vectors represent each pixel in the image. VQ algorithm is used to cluster each pixel data into groups. A representative feature table based on the dominant groups is obtained and used to retrieve similar images according to object within the image. The proposed method can retrieve similar images even in the case that the objects are translated, scaled, and rotated.

Improvement Method of Tracking Speed for Color Object using Kalman Filter and SURF (SURF(Speeded Up Robust Features)와 Kalman Filter를 이용한 컬러 객체 추적 속도 향상 방법)

  • Lee, Hee-Jae;Lee, Sang-Goog
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.3
    • /
    • pp.336-344
    • /
    • 2012
  • As an important part of the Computer Vision, the object recognition and tracking function has infinite possibilities range from motion recognition to aerospace applications. One of methods to improve accuracy of the object recognition, are uses colors which have robustness of orientation, scale and occlusion. Computational cost for extracting features can be reduced by using color. Also, for fast object recognition, predicting the location of the object recognition in a smaller area is more effective than lowering accuracy of the algorithm. In this paper, we propose a method that uses SURF descriptors which applied with color model for improving recognition accuracy and combines with Kalman filter which is Motion estimation algorithm for fast object tracking. As a result, the proposed method classified objects which have same patterns with different colors and showed fast tracking results by performing recognition in ROI which estimates future motion of an object.

VOQL : A Visual Object Query Language (Stochastic VOQL : 시각적 객체 질의어)

  • Kim, Jeong-Hee;Cho, Wan-Sup;Lee, Suk-Kyoon;Whang, Kyung-Young
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.38 no.5
    • /
    • pp.1-15
    • /
    • 2001
  • Expressing complex query conditions in a concise and intuitive way has been a challenge in the design of visual object-oriented query languages. We propose a visual query language called VOQL (Visual Object oriented Query Language) for object oriented databases. By employing the visual notation of graph and Venn diagram, the database schema and the advanced features of object oriented queries such as multi-valued path expressions and quantifiers can be represented in a simple way. VOQL has such good features as simple and intuitive syntax, well-defined semantics, and excellent expressive power of object-oriented queries compared with previous visual object-oriented query languages.

  • PDF

Design of the 3D Object Recognition System with Hierarchical Feature Learning (계층적 특징 학습을 이용한 3차원 물체 인식 시스템의 설계)

  • Kim, Joohee;Kim, Dongha;Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.1
    • /
    • pp.13-20
    • /
    • 2016
  • In this paper, we propose an object recognition system that can effectively find out its category, its instance name, and several attributes from the color and depth images of an object with hierarchical feature learning. In the preprocessing stage, our system transforms the depth images of the object into the surface normal vectors, which can represent the shape information of the object more precisely. In the feature learning stage, it extracts a set of patch features and image features from a pair of the color image and the surface normal vector through two-layered learning. And then the system trains a set of independent classification models with a set of labeled feature vectors and the SVM learning algorithm. Through experiments with UW RGB-D Object Dataset, we verify the performance of the proposed object recognition system.

A Novel Method for Moving Object Tracking using Covariance Matrix and Riemannian Metric (공분산 행렬과 리만 측도를 이용한 이동물체 추적 방법)

  • Lee, Geum-Boon;Cho, Beom-Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.364-370
    • /
    • 2011
  • This paper propose a novel method for tracking moving object based on covariance matrix and Riemannian Manifolds. With image backgrounds continuously changed, we use the covariance matrices to extract features for tracking nonrigid object undergoing transformation and deformation. The covariance matrix can make fusion of different types of features and has its small dimension, therefore we enable to handle the spatial and statistical properties as well as the component correlation. The proposed method can estimate the position of the moving object by employing the covariance matrix of object region as a feature vector and comparing the candidate regions. Rimannian Geometry is efficiently adapted to object deformation and change of shape and improve the accuracy by using geodesic distance to predict the estimated position with the minimum distance. The experimental results have shown that the proposed method correctly tracked the moving object.

Deep Learning Machine Vision System with High Object Recognition Rate using Multiple-Exposure Image Sensing Method

  • Park, Min-Jun;Kim, Hyeon-June
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.76-81
    • /
    • 2021
  • In this study, we propose a machine vision system with a high object recognition rate. By utilizing a multiple-exposure image sensing technique, the proposed deep learning-based machine vision system can cover a wide light intensity range without further learning processes on the various light intensity range. If the proposed machine vision system fails to recognize object features, the system operates in a multiple-exposure sensing mode and detects the target object that is blocked in the near dark or bright region. Furthermore, short- and long-exposure images from the multiple-exposure sensing mode are synthesized to obtain accurate object feature information. That results in the generation of a wide dynamic range of image information. Even with the object recognition resources for the deep learning process with a light intensity range of only 23 dB, the prototype machine vision system with the multiple-exposure imaging method demonstrated an object recognition performance with a light intensity range of up to 96 dB.

Bottleneck-based Siam-CNN Algorithm for Object Tracking (객체 추적을 위한 보틀넥 기반 Siam-CNN 알고리즘)

  • Lim, Su-Chang;Kim, Jong-Chan
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.1
    • /
    • pp.72-81
    • /
    • 2022
  • Visual Object Tracking is known as the most fundamental problem in the field of computer vision. Object tracking localize the region of target object with bounding box in the video. In this paper, a custom CNN is created to extract object feature that has strong and various information. This network was constructed as a Siamese network for use as a feature extractor. The input images are passed convolution block composed of a bottleneck layers, and features are emphasized. The feature map of the target object and the search area, extracted from the Siamese network, was input as a local proposal network. Estimate the object area using the feature map. The performance of the tracking algorithm was evaluated using the OTB2013 dataset. Success Plot and Precision Plot were used as evaluation matrix. As a result of the experiment, 0.611 in Success Plot and 0.831 in Precision Plot were achieved.