The Transactions of the Korean Institute of Electrical Engineers P
/
v.57
no.4
/
pp.424-430
/
2008
A new active vibration measurement system in electric power transmission line is presented, using in the nondestructive test. With a permanent magnet and a couple of coils, the system exerts impact force to a test object and in turn picks up the vibration of the object. The natural frequency with the amplitude obtained from the system are used as a basis for the detection of defects in the object. The system is controlled by an electronic device designed to facilitate the fully automated testing process with consistent repeatability and reliability which are essential to the nondestructive test. The system is expected to be applied to the wide area of defect detection including the classification of mechanical parts in production and inspection processes.
This paper presents a novel lightweight object detection model tailored for low-powered edge devices, addressing the limitations of traditional resource-intensive computer vision models. Our proposed detector, inspired by the Single Shot Detector (SSD), employs a compact yet robust network design. Crucially, it integrates an 'enhancer block' that significantly boosts its efficiency in detecting smaller objects. The model comprises two primary components: the Light_Block for efficient feature extraction using Depth-wise and Pointwise Convolution layers, and the Enhancer_Block for enhanced detection of tiny objects. Trained from scratch on the Udacity Annotated Dataset with image dimensions of 300x480, our model eschews the need for pre-trained classification weights. Weighing only 5.5MB with approximately 0.43M parameters, our detector achieved a mean average precision (mAP) of 27.7% and processed at 140 FPS, outperforming conventional models in both precision and efficiency. This research underscores the potential of lightweight designs in advancing object detection for edge devices without compromising accuracy.
Journal of the Korea Academia-Industrial cooperation Society
/
v.18
no.12
/
pp.157-163
/
2017
The object segmentation approach has the merit of reducing the processing cost required to detect moths of interest, because it applies a moth detection algorithm to the segmented objects after segmenting the objects individually in the moth image. In this paper, an object segmentation method for moth detection in pheromone trap images is proposed. Our method consists of preprocessing, thresholding, morphological filtering, and object labeling processes. Thresholding in the process is a critical step significantly influencing the performance of object segmentation. The proposed method can threshold very elaborately by reflecting the local properties of the moth images. We performed thresholding using global and local versions of Ostu's method and, used the proposed method for the moth images of Carposina sasakii acquired on a pheromone trap placed in an orchard. It was demonstrated that the proposed method could reflect the properties of light and background on the moth images. Also, we performed object segmentation and moth classification for Carposina sasakii images, where the latter process used an SVM classifier with training and classification steps. In the experiments, the proposed method performed the detection of Carposina sasakii for 10 moth images and achieved an average detection rate of 95% of them. Therefore, it was shown that the proposed technique is an effective monitoring method of Carposina sasakii in an orchard.
Crime has become one of the major problems in modern society. Even though visual surveillances through closed-circuit television (CCTV) is extensively used for solving crime, the number of crimes has not decreased. This is because there is insufficient workforce for performing 24-hour surveillance. In addition, CCTV surveillance by humans is not efficient for detecting dangerous situations owing to accuracy issues. In this paper, we propose the autonomous detection of dangerous situations in CCTV scenes using a deep learning model with relational inference. The main feature of the proposed method is that it can simultaneously perform object detection and relational inference to determine the danger of the situations captured by CCTV. This enables us to efficiently classify dangerous situations by inferring the relationship between detected objects (i.e., distance and position). Experimental results demonstrate that the proposed method outperforms existing methods in terms of the accuracy of image classification and the false alarm rate even when object detection accuracy is low.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.15
no.6
/
pp.471-476
/
2022
In this paper, we propose an object detection using a 4D imaging radar, which developed to solve the problems of weak cameras and LiDAR in bad weather. When data are measured and collected through a 4D imaging radar, the density of point cloud data is low compared to LiDAR data. A technique for clustering objects and extracting the features of objects through voxels in the cluster is proposed using the characteristics of wide distances between objects due to low density. Furthermore, we propose an object detection using the extracted features.
Journal of the Korea Society of Computer and Information
/
v.27
no.9
/
pp.21-32
/
2022
Image labeling must be preceded in order to perform object detection, and this task is considered a significant burden in building a deep learning model. Tens of thousands of images need to be trained for building a deep learning model, and human labelers have many limitations in labeling these images manually. In order to overcome these difficulties, this study proposes a method to perform object detection without significant performance degradation, even though labeling some images rather than the entire image. Specifically, in this study, low-resolution oriental painting images are converted into high-quality images using a super-resolution algorithm, and the effect of SSIM and PSNR derived in this process on the mAP of object detection is analyzed. We expect that the results of this study can contribute significantly to constructing deep learning models such as image classification, object detection, and image segmentation that require efficient image labeling.
이동 물체 탐지(Object Detection) 기법은 대부분의 감시 시스템에서 가장 초기 단계로서, 이후에 물체 추적(Object Tracking) 및 물체 식별(Object Classification) 등의 지능 알고리듬에 입력으로 사용된다. 따라서 물체의 윤곽의 변화 없이 최대한 정교하게 이동 물체 영역 맵을 생성하는 것이 물체 탐지의 가장 중요한 요소가 된다. 카메라가 고정되어 있는 경우에는 현재 들어오는 영상에 대한 확률적 배경 모델을 생성할 수 있지만, 팬틸트 카메라와 같이 영상의 좌표가 변하는 환경에서는 배경 모델도 계속 변하기 때문에 기존의 배경 모델을 그대로 사용할 수 없다. 본 논문에서는 팬틸트 카메라와 같이 동적인 카메라에서 이동 물체 탐지를 위해, 국소 특징점(Local Feature)를 통해 카메라의 움직임을 판단하여 연속되는 영상간의 변환 행렬(Transformation Matrix)를 구하고 하고, 확률적 배경 모델링을 통한 이동 물체 탐지 기법을 제안한다. 자제 촬영한 이동 카메라 실험영상을 통해서 이 알고리듬이 동적 배경에서도 매우 강인하게 동작하는 것을 검증하였다.
In this study, regions infected by pine wilt disease were extracted by using object-based classification method (OB-infected region), and the characteristics of special distribution about OB-infected region were figured out. Scale 24, Shape 0.1, Color 0.9, Compactness 0.5, and Smoothness 0.5 was selected as the objected-based, optimal weighted value of OB-infected region classification. The total accuracy of classification was high with 99% and Kappa coefficient was also high with 0.97. The area of OB-infected region was approximately 90 ha, 16% of the total area. The OB-infected region in Age class V and VI was intensively distributed with 97% of the total. Also, The OB-infected region in Middle and Large DBH class was intensively distributed with 99% of the total. In terms of the topographic characteristics of OB-infected region, the damages occurred approximately 86% below the altitude of 200 m, and occurred 91% with a slope less than 10 degree. The damage occurred a lot in low hilly mountain and undulating slope. In addition, the accessibility to road and residential area from OB-infected region was less than 300 m in large part. Overall, it was figured out that artificial effect is stronger than natural effect with regard to the spread of pine wilt disease.
This paper is a study on data augmentation for small dataset by using deep learning. In case of training a deep learning model for recognition and classification of non-mainstream objects, there is a limit to obtaining a large amount of training data. Therefore, this paper proposes a data augmentation method using perspective transform and image synthesis. In addition, it is necessary to save the object area for all training data to detect the object area. Thus, we devised a way to augment the data and save object regions at the same time. To verify the performance of the augmented data using the proposed method, an experiment was conducted to compare classification accuracy with the augmented data by the traditional method, and transfer learning was used in model learning. As experimental results, the model trained using the proposed method showed higher accuracy than the model trained using the traditional method.
This paper presents an vulnerable road user (VRU) classification and tracking algorithm using vision and LiDAR sensor fusion method for urban autonomous driving. The classification and tracking for vulnerable road users such as pedestrian, bicycle, and motorcycle are essential for autonomous driving in complex urban environments. In this paper, a real-time object image detection algorithm called Yolo and object tracking algorithm from LiDAR point cloud are fused in the high level. The proposed algorithm consists of four parts. First, the object bounding boxes on the pixel coordinate, which is obtained from YOLO, are transformed into the local coordinate of subject vehicle using the homography matrix. Second, a LiDAR point cloud is clustered based on Euclidean distance and the clusters are associated using GNN. In addition, the states of clusters including position, heading angle, velocity and acceleration information are estimated using geometric model free approach (GMFA) in real-time. Finally, the each LiDAR track is matched with a vision track using angle information of transformed vision track and assigned a classification id. The proposed fusion algorithm is evaluated via real vehicle test in the urban environment.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.