• Title/Summary/Keyword: object detection and classification

Search Result 296, Processing Time 0.036 seconds

Develpment of Automatic Classification For Categorizing Recyclable Materials (딥러닝을 활용한 재활용 폐기물 선별 시스템 개발)

  • Park Seung Woo;Kim Hyung Don;Sim Sang Woo;Yoo, Seong Won;Kim Jae-Soo;Lee Sang Won;Jeon Woo jin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.739-740
    • /
    • 2023
  • 코로나19 의 여파로 생활 폐기물은 급속도로 늘어나는 반면 재활용 사업장의 여건은 개선되지 않고 있어 재활용 산업의 인력난 해결의 필요성이 떠오르고 있다. 이를 위해 본 논문에서는 딥러닝 모델을 활용하여 재활용 폐기물을 분류하는 방법을 제시한다. 딥러닝 모델은 최신 객체 탐지 모델인 YOLOv5를 사용하고, 객체 탐지 성능을 향상시키기 위해 실제 환경에서 수집된 학습용 데이터를 직접 라벨링하여 사용한다. 실험 결과 종류별 평균 0.69의 mAP50 스코어를 기록하였으며 이를 통해 딥러닝 모델을 활용하여 재활용 폐기물을 효율적으로 분류하는 것이 가능함을 확인하였다.

  • PDF

A Study on Area Detection Using Transfer-Learning Technique (Transfer-Learning 기법을 이용한 영역검출 기법에 관한 연구)

  • Shin, Kwang-seong;Shin, Seong-yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.178-179
    • /
    • 2018
  • Recently, methods of using machine learning in artificial intelligence such as autonomous navigation and speech recognition have been actively studied. Classical image processing methods such as classical boundary detection and pattern recognition have many limitations in order to recognize a specific object or area in a digital image. However, when a machine learning method such as deep-learning is used, Can be obtained. However, basically, a large amount of learning data must be secured for machine learning such as deep-learning. Therefore, it is difficult to apply the machine learning for area classification when the amount of data is very small, such as aerial photographs for environmental analysis. In this study, we apply a transfer-learning technique that can be used when the dataset size of the input image is small and the shape of the input image is not included in the category of the training dataset.

  • PDF

The Study on The Identification Model of Friend or Foe on Helicopter by using Binary Classification with CNN

  • Kim, Tae Wan;Kim, Jong Hwan;Moon, Ho Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.3
    • /
    • pp.33-42
    • /
    • 2020
  • There has been difficulties in identifying objects by relying on the naked eye in various surveillance systems. There is a growing need for automated surveillance systems to replace soldiers in the field of military surveillance operations. Even though the object detection technology is developing rapidly in the civilian domain, but the research applied to the military is insufficient due to a lack of data and interest. Thus, in this paper, we applied one of deep learning algorithms, Convolutional Neural Network-based binary classification to develop an autonomous identification model of both friend and foe helicopters (AH-64, Mi-17) among the military weapon systems, and evaluated the model performance by considering accuracy, precision, recall and F-measure. As the result, the identification model demonstrates 97.8%, 97.3%, 98.5%, and 97.8 for accuracy, precision, recall and F-measure, respectively. In addition, we analyzed the feature map on convolution layers of the identification model in order to check which area of imagery is highly weighted. In general, rotary shaft of rotating wing, wheels, and air-intake on both of ally and foe helicopters played a major role in the performance of the identification model. This is the first study to attempt to classify images of helicopters among military weapons systems using CNN, and the model proposed in this study shows higher accuracy than the existing classification model for other weapons systems.

A Comparison of Image Classification System for Building Waste Data based on Deep Learning (딥러닝기반 건축폐기물 이미지 분류 시스템 비교)

  • Jae-Kyung Sung;Mincheol Yang;Kyungnam Moon;Yong-Guk Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.3
    • /
    • pp.199-206
    • /
    • 2023
  • This study utilizes deep learning algorithms to automatically classify construction waste into three categories: wood waste, plastic waste, and concrete waste. Two models, VGG-16 and ViT (Vision Transformer), which are convolutional neural network image classification algorithms and NLP-based models that sequence images, respectively, were compared for their performance in classifying construction waste. Image data for construction waste was collected by crawling images from search engines worldwide, and 3,000 images, with 1,000 images for each category, were obtained by excluding images that were difficult to distinguish with the naked eye or that were duplicated and would interfere with the experiment. In addition, to improve the accuracy of the models, data augmentation was performed during training with a total of 30,000 images. Despite the unstructured nature of the collected image data, the experimental results showed that VGG-16 achieved an accuracy of 91.5%, and ViT achieved an accuracy of 92.7%. This seems to suggest the possibility of practical application in actual construction waste data management work. If object detection techniques or semantic segmentation techniques are utilized based on this study, more precise classification will be possible even within a single image, resulting in more accurate waste classification

A Study on Object Based Image Analysis Methods for Land Use and Land Cover Classification in Agricultural Areas (변화지역 탐지를 위한 시계열 KOMPSAT-2 다중분광 영상의 MAD 기반 상대복사 보정에 관한 연구)

  • Yeon, Jong-Min;Kim, Hyun-Ok;Yoon, Bo-Yeol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.66-80
    • /
    • 2012
  • It is necessary to normalize spectral image values derived from multi-temporal satellite data to a common scale in order to apply remote sensing methods for change detection, disaster mapping, crop monitoring and etc. There are two main approaches: absolute radiometric normalization and relative radiometric normalization. This study focuses on the multi-temporal satellite image processing by the use of relative radiometric normalization. Three scenes of KOMPSAT-2 imagery were processed using the Multivariate Alteration Detection(MAD) method, which has a particular advantage of selecting PIFs(Pseudo Invariant Features) automatically by canonical correlation analysis. The scenes were then applied to detect disaster areas over Sendai, Japan, which was hit by a tsunami on 11 March 2011. The case study showed that the automatic extraction of changed areas after the tsunami using relatively normalized satellite data via the MAD method was done within a high accuracy level. In addition, the relative normalization of multi-temporal satellite imagery produced better results to rapidly map disaster-affected areas with an increased confidence level.

A Study on Characteristics of Core Projects Described in 3rd Community Health Plans (제3기 지역보건의료계획서에 기술된 핵심사업의 특성에 관한 연구)

  • Kim, Dong-Moon;Lee, Weon-Young;Moon, Ok-Ryun;Kim, Chang-Yup
    • Journal of Preventive Medicine and Public Health
    • /
    • v.37 no.1
    • /
    • pp.88-98
    • /
    • 2004
  • Objectives : The 3rd community health plan let health centers select and promote core projects considering budget and manpower. This study analyzed the content and selection processes of core projects, using the nationwide 3rd community health plans, to give relevant information on health center policies. Methods : Classification criteria for content analysis of core projects were established and verified through a literature review and by specialist discussions. Fifty plans were selected by stratified proportional random sampling for regional characteristics. And coding criteria standardized through coding repetition and discussion, by 2 persons (k>0.7). Using stratified proportional random sampling for 16 cities and provinces, regional characteristics, 117 plans were selected, and the contents of the core project selection processes and program contents analyzed. Results : The survey was used by 59.8 % of samples as a core project decision-making method. The partici- pants included 98.6, 81.4, 40 and 38.6% of the health staffs, residents, medical institutions, and administrators, respectively. Discussion was used by 15.4% of samples. The participants were health staffs by 100% as a great. The ranking of the frequencies of the selected core projects were, in order; chronic disease control, health promotion, elderly health, maternal-child health, and oral health at 16.4, 14.8, 14.3, 12.7 and 11.9%, respectively. Analyses on the chronic disease control and elderly health contents showed the diversity of object disease, high rates of visitors on patient detection programs, high rates of unclear target populations, and the provision of medical exams and treatments as the main services, with high variations in business per-formance. The national health budgets for health centers in 2003 were about 910 and 240 million won for chronic disease control and elderly health, respectively, which were less than for the other five priority core projects. Conclusions : The chronic disease control and elderly health at the health centers were not standardized for object disease, patient detection program, target population, service provision, and national support budget was insufficient. Thus it is necessary to develop standard guidelines, and increase financial support, for chronic disease control and elderly health

Land Cover Classification of Coastal Area by SAM from Airborne Hyperspectral Images (항공 초분광 영상으로부터 연안지역의 SAM 토지피복분류)

  • LEE, Jin-Duk;BANG, Kon-Joon;KIM, Hyun-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.1
    • /
    • pp.35-45
    • /
    • 2018
  • Image data collected by an airborne hyperspectral camera system have a great usability in coastal line mapping, detection of facilities composed of specific materials, detailed land use analysis, change monitoring and so forh in a complex coastal area because the system provides almost complete spectral and spatial information for each image pixel of tens to hundreds of spectral bands. A few approaches after classifying by a few approaches based on SAM(Spectral Angle Mapper) supervised classification were applied for extracting optimal land cover information from hyperspectral images acquired by CASI-1500 airborne hyperspectral camera on the object of a coastal area which includes both land and sea water areas. We applied three different approaches, that is to say firstly the classification approach of combined land and sea areas, secondly the reclassification approach after decompostion of land and sea areas from classification result of combined land and sea areas, and thirdly the land area-only classification approach using atmospheric correction images and compared classification results and accuracies. Land cover classification was conducted respectively by selecting not only four band images with the same wavelength range as IKONOS, QuickBird, KOMPSAT and GeoEye satelllite images but also eight band images with the same wavelength range as WorldView-2 from 48 band hyperspectral images and then compared with the classification result conducted with all of 48 band images. As a result, the reclassification approach after decompostion of land and sea areas from classification result of combined land and sea areas is more effective than classification approach of combined land and sea areas. It is showed the bigger the number of bands, the higher accuracy and reliability in the reclassification approach referred above. The results of higher spectral resolution showed asphalt or concrete roads was able to be classified more accurately.

Development of surface detection model for dried semi-finished product of Kimbukak using deep learning (딥러닝 기반 김부각 건조 반제품 표면 검출 모델 개발)

  • Tae Hyong Kim;Ki Hyun Kwon;Ah-Na Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.4
    • /
    • pp.205-212
    • /
    • 2024
  • This study developed a deep learning model that distinguishes the front (with garnish) and the back (without garnish) surface of the dried semi-finished product (dried bukak) for screening operation before transfter the dried bukak to oil heater using robot's vacuum gripper. For deep learning model training and verification, RGB images for the front and back surfaces of 400 dry bukak that treated by data preproccessing were obtained. YOLO-v5 was used as a base structure of deep learning model. The area, surface information labeling, and data augmentation techniques were applied from the acquired image. Parameters including mAP, mIoU, accumulation, recall, decision, and F1-score were selected to evaluate the performance of the developed YOLO-v5 deep learning model-based surface detection model. The mAP and mIoU on the front surface were 0.98 and 0.96, respectively, and on the back surface, they were 1.00 and 0.95, respectively. The results of binary classification for the two front and back classes were average 98.5%, recall 98.3%, decision 98.6%, and F1-score 98.4%. As a result, the developed model can classify the surface information of the dried bukak using RGB images, and it can be used to develop a robot-automated system for the surface detection process of the dried bukak before deep frying.

Detecting Vehicles That Are Illegally Driving on Road Shoulders Using Faster R-CNN (Faster R-CNN을 이용한 갓길 차로 위반 차량 검출)

  • Go, MyungJin;Park, Minju;Yeo, Jiho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.105-122
    • /
    • 2022
  • According to the statistics about the fatal crashes that have occurred on the expressways for the last 5 years, those who died on the shoulders of the road has been as 3 times high as the others who died on the expressways. It suggests that the crashes on the shoulders of the road should be fatal, and that it would be important to prevent the traffic crashes by cracking down on the vehicles intruding the shoulders of the road. Therefore, this study proposed a method to detect a vehicle that violates the shoulder lane by using the Faster R-CNN. The vehicle was detected based on the Faster R-CNN, and an additional reading module was configured to determine whether there was a shoulder violation. For experiments and evaluations, GTAV, a simulation game that can reproduce situations similar to the real world, was used. 1,800 images of training data and 800 evaluation data were processed and generated, and the performance according to the change of the threshold value was measured in ZFNet and VGG16. As a result, the detection rate of ZFNet was 99.2% based on Threshold 0.8 and VGG16 93.9% based on Threshold 0.7, and the average detection speed for each model was 0.0468 seconds for ZFNet and 0.16 seconds for VGG16, so the detection rate of ZFNet was about 7% higher. The speed was also confirmed to be about 3.4 times faster. These results show that even in a relatively uncomplicated network, it is possible to detect a vehicle that violates the shoulder lane at a high speed without pre-processing the input image. It suggests that this algorithm can be used to detect violations of designated lanes if sufficient training datasets based on actual video data are obtained.

Detection of Pine Wilt Disease tree Using High Resolution Aerial Photographs - A Case Study of Kangwon National University Research Forest - (시계열 고해상도 항공영상을 이용한 소나무재선충병 감염목 탐지 - 강원대학교 학술림 일원을 대상으로 -)

  • PARK, Jeong-Mook;CHOI, In-Gyu;LEE, Jung-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.2
    • /
    • pp.36-49
    • /
    • 2019
  • The objectives of this study were to extract "Field Survey Based Infection Tree of Pine Wilt Disease(FSB_ITPWD)" and "Object Classification Based Infection Tree of Pine Wilt Disease(OCB_ITPWD)" from the Research Forest at Kangwon National University, and evaluate the spatial distribution characteristics and occurrence intensity of wood infested by pine wood nematode. It was found that the OCB optimum weights (OCB) were 11 for Scale, 0.1 for Shape, 0.9 for Color, 0.9 for Compactness, and 0.1 for Smoothness. The overall classification accuracy was approximately 94%, and the Kappa coefficient was 0.85, which was very high. OCB_ITPWD area is approximately 2.4ha, which is approximately 0.05% of the total area. When the stand structure, distribution characteristics, and topographic and geographic factors of OCB_ITPWD and those of FSB_ITPWD were compared, age class IV was the most abundant age class in FSB_ITPWD (approximately 55%) and OCB_ITPWD (approximately 44%) - the latter was 11% lower than the former. The diameter at breast heigh (DBH at 1.2m from the ground) results showed that (below 14cm) and (below 28cm) DBH trees were the majority (approximately 93%) in OCB_ITPWD, while medium and (more then 30cm) DBH trees were the majority (approximately 87%) in FSB_ITPWD, indicating different DBH distribution. On the other hand, the elevation distribution rate of OCB_ITPWD was mostly between 401 and 500m (approximately 30%), while that of FSB_ITPWD was mostly between 301 and 400m (approximately 45%). Additionally, the accessibility from the forest road was the highest at "100m or less" for both OCB_ITPWD (24%) and FSB_ITPWD (31%), indicating that more trees were infected when a stand was closer to a forest road with higher accessibility. OCB_ITPWD hotspots were 31 and 32 compartments, and it was highly distributed in areas with a higher age class and a higher DBH class.