• 제목/요약/키워드: object detect

검색결과 935건 처리시간 0.026초

Frontal Face Video Analysis for Detecting Fatigue States

  • Cha, Simyeong;Ha, Jongwoo;Yoon, Soungwoong;Ahn, Chang-Won
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권6호
    • /
    • pp.43-52
    • /
    • 2022
  • 사람이 느끼는 피로는 다양한 생체신호로부터 측정이 가능한 것으로 알려져 있으며, 기존 연구는 질병과 관련된 심각한 피로수준을 산정하는데 주된 목적을 두고 있다. 본 연구에서는 피실험자의 영상을 이용하여 딥러닝 기반의 영상 분석 기술을 적용, 피로 여부를 판단하기 위한 모델을 제안한다. 특히 화상 분석에서 통상적으로 사용되는 객체 인식, 요소 추출과 함께 영상 데이터의 시계열적 특성을 고려하여 방법론을 교차한 3개 분석모델을 제시했다. 다양한 피로상황에서 수집된 정면 얼굴 영상 데이터를 이용하여 제시된 모델을 실험하였으며, CNN 모델의 경우 0.67의 정확도로 피로 상태를 분류할 수 있어 영상 분석 기반의 피로 상태 분류가 유의미하다고 판단된다. 또한 모델별 학습 및 검증 절차 분석을 통해 영상 데이터 특성에 따른 모델 적용방안을 제시했다.

흉부 X선 영상을 이용한 작은 층수 ResNet 기반 폐렴 진단 모델의 성능 평가 (Performance Evaluation of ResNet-based Pneumonia Detection Model with the Small Number of Layers Using Chest X-ray Images)

  • 최용은;이승완
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제46권4호
    • /
    • pp.277-285
    • /
    • 2023
  • In this study, pneumonia identification networks with the small number of layers were constructed by using chest X-ray images. The networks had similar trainable-parameters, and the performance of the trained models was quantitatively evaluated with the modification of the network architectures. A total of 6 networks were constructed: convolutional neural network (CNN), VGGNet, GoogleNet, residual network with identity blocks, ResNet with bottleneck blocks and ResNet with identity and bottleneck blocks. Trainable parameters for the 6 networks were set in a range of 273,921-294,817 by adjusting the output channels of convolution layers. The network training was implemented with binary cross entropy (BCE) loss function, sigmoid activation function, adaptive moment estimation (Adam) optimizer and 100 epochs. The performance of the trained models was evaluated in terms of training time, accuracy, precision, recall, specificity and F1-score. The results showed that the trained models with the small number of layers precisely detect pneumonia from chest X-ray images. In particular, the overall quantitative performance of the trained models based on the ResNets was above 0.9, and the performance levels were similar or superior to those based on the CNN, VGGNet and GoogleNet. Also, the residual blocks affected the performance of the trained models based on the ResNets. Therefore, in this study, we demonstrated that the object detection networks with the small number of layers are suitable for detecting pneumonia using chest X-ray images. And, the trained models based on the ResNets can be optimized by applying appropriate residual-blocks.

A Novel RGB Channel Assimilation for Hyperspectral Image Classification using 3D-Convolutional Neural Network with Bi-Long Short-Term Memory

  • M. Preethi;C. Velayutham;S. Arumugaperumal
    • International Journal of Computer Science & Network Security
    • /
    • 제23권3호
    • /
    • pp.177-186
    • /
    • 2023
  • Hyperspectral imaging technology is one of the most efficient and fast-growing technologies in recent years. Hyperspectral image (HSI) comprises contiguous spectral bands for every pixel that is used to detect the object with significant accuracy and details. HSI contains high dimensionality of spectral information which is not easy to classify every pixel. To confront the problem, we propose a novel RGB channel Assimilation for classification methods. The color features are extracted by using chromaticity computation. Additionally, this work discusses the classification of hyperspectral image based on Domain Transform Interpolated Convolution Filter (DTICF) and 3D-CNN with Bi-directional-Long Short Term Memory (Bi-LSTM). There are three steps for the proposed techniques: First, HSI data is converted to RGB images with spatial features. Before using the DTICF, the RGB images of HSI and patch of the input image from raw HSI are integrated. Afterward, the pair features of spectral and spatial are excerpted using DTICF from integrated HSI. Those obtained spatial and spectral features are finally given into the designed 3D-CNN with Bi-LSTM framework. In the second step, the excerpted color features are classified by 2D-CNN. The probabilistic classification map of 3D-CNN-Bi-LSTM, and 2D-CNN are fused. In the last step, additionally, Markov Random Field (MRF) is utilized for improving the fused probabilistic classification map efficiently. Based on the experimental results, two different hyperspectral images prove that novel RGB channel assimilation of DTICF-3D-CNN-Bi-LSTM approach is more important and provides good classification results compared to other classification approaches.

생활패턴 인지가 가능한 스마트 레이더 시스템 (Smart Radar System for Life Pattern Recognition)

  • 정상중
    • 융합신호처리학회논문지
    • /
    • 제23권2호
    • /
    • pp.91-96
    • /
    • 2022
  • 현재 카메라 기반 기술 수준으로는 센서 기반 기본 생활패턴 인지 기술은 정확한 데이터를 얻기 위해서는 불편함을 감수해야 하고, 상용화 밴드 제품은 정확한 데이터 수집이 어려우며, 행동의 동기와 원인 및 심리적 영향 등을 고려하지 못하는 실정이다. 본 논문에서는 생활패턴 인지를 위한 레이더 기술은 일상생활에서 주변의 사람이나 물체를 탐지하기 위해 고안된 파형을 전송하여 반사되어 오는 수신 신호를 신호 처리함으로써 물체와의 거리, 속도, 각도를 측정하는 기술을 적용하여 기존 영상 기반의 서비스에서의 사생활 보호와 같은 이슈를 보완할 수 있도록 고안하였다. 제안 시스템의 구현을 위해 TIIWR1642 칩을 기반으로 60GHz 대역 밀리미터파 FMCW 송신/수신을 위한 RF 칩셋제어, 거리/속도/각도 검출을 위한 모듈의 개발 및 신호처리 소프트웨어를 포함한 기술을 구현하였다. 생활 정보에 대한 메타 분석으로 생활패턴의 정량적 분석을 통해 개인별 맞춤형 생활패턴 추출을 통해 자기 관리 및 행동 시퀀스를 산출하여 개인별 생활패턴의 분석이 보안 및 안전 응용서비스로 가능할 것으로 기대된다.

고해상도 위성영상과 인공지능을 활용한 국토 변화탐지 및 모니터링 연구: 실증대상 지역인 정읍시를 중심으로 (A Study on the Land Change Detection and Monitoring Using High-Resolution Satellite Images and Artificial Intelligence: A Case Study of Jeongeup City)

  • 조나혜;이정주;김현덕
    • 지적과 국토정보
    • /
    • 제53권1호
    • /
    • pp.107-121
    • /
    • 2023
  • 실시간으로 변하는 국토를 광범위하게 취득하고, 이를 빠르고 정확하게 파악하기 위해 최근 공개 된 고해상도 국토위성 영상자료와 인공지능(AI; Artificial Intelligence)을 활용하고자 한다. 기존 위성 영상에 비해 국토위성의 경우 분광 및 주기 해상도가 높아져, 국토의 변화상을 주기적으로 모니터링하는 데 보다 적합한 자료원이 되었다. 따라서 본 연구는 국토위성을 취득하여 국토 변화를 탐지하기 위한 객체 8종을 선정하고, 이에 대한 데이터 셋 구축 및 AI 모델을 적용하여 분석하고자 한다. 다양한 유형의 객체 8종을 탐지하기 위한 최적의 모델과 변수 조건들을 확인하기 위해 여러 실험을 수행하고, AI 기반의 영상분석을 기술적으로 검토해보고자 한다.

딥러닝을 이용한 열영상 기반 마스크 검출 시스템 설계 (Design of Face with Mask Detection System in Thermal Images Using Deep Learning)

  • 김용중;최병상;이기섭;정경권
    • 융합보안논문지
    • /
    • 제22권2호
    • /
    • pp.21-26
    • /
    • 2022
  • 마스크 착용은 COVID-19 감염을 예방하기 위한 효과적인 방안이다. 적외선 열화상 기반의 온도 측정과 신원 인식 시스템이 기업에서 널리 사용되고 있는 상황에서 마스크 감지를 위한 연구는 필수적이다. 최근 비전분야에 소개된 MTCNN은 객체 인스턴스 세분화를위한 개념적으로 간단하고 유연하며 일반적인 프레임 워크를 제시한다. 본 논문에서는 열적외선 카메라로부터 획득한 열감지영상에서 발열체인 인스턴스에 대해 발열부위의 세그멘테이션을 생성하는 동시에 이미지 내의 오브젝트 발열부분을 효율적으로 탐색하는 알고리즘을 제안한다. MTCNN(Multi-task Cascaded Convolutional Networks) 기법은 바운딩 박스 인식을 위해 기존 브랜치와 병렬로 객체 마스크를 예측하기 위한 브랜치를 추가한 알고리즘이다. MTCNN은 다른 작업으로 일반화하기 용이하다. 본 논문에서는 MTCNN기반 적외선 열영상 검출알고리즘을 제안하여 RGB영상에서 구별할 수 없는 마스크 착용 여부를 탐지하였다.

도심지역 LiDAR자료로부터 도로포인트 추출기법 연구 (Extracting Road Points from LiDAR Data for Urban Area)

  • 장영운;최연웅;조기성
    • 대한토목학회논문집
    • /
    • 제28권2D호
    • /
    • pp.269-276
    • /
    • 2008
  • 오늘날 도로망에 대한 자료기반을 구축하고, 유지 관리하는 것은 교통, 도시계획 등과 같은 많은 사회 전반 업무에서 필수적인 요소로 자리 잡고 있으며, 비상사태 대처나 재난 관리와 같은 많은 중요한 요소들이 그와 같은 자료에 바탕을 두고 있다. 그러나 도로망 자료를 구성하고 보완하는 일에는 높은 비용이 필요하며, 대부분의 시간을 많은 인력에 의존해야 하는 것이 현실이다. 본 연구에서는 LiDAR 원시자료로부터 도로관련 자료기반 구축을 위한 도로 포인트 추출을 위하여 정보량 추정의 척도로 사용되는 정보이론적 관점에서의 엔트로피 이론을 도입하여 LiDAR 자료의 표고정보에 대한 엔트로피를 계산함으로써 포인트들을 분류하여 그룹화하고 분류된 그룹들의 반사강도를 이용하여 도로로 예상되는 그룹을 추출하였으며, 법령에서 규정하고 있는 각종 도로 및 시설의 특징을 이용하여 도시지역 LiDAR 원시자료로부터 도로포인트를 자동적으로 추출하기 위한 방법을 제시하였다.

AI 및 IoT에 대한 위성항법시스템 활용 동향 (Trends in Utilizing Satellite Navigation Systems for AI and IoT)

  • 박희선;주정민;황석승
    • 한국전자통신학회논문지
    • /
    • 제18권5호
    • /
    • pp.761-768
    • /
    • 2023
  • 4차 산업혁명에서 AI(Artificial Intelligence)와 IoT(Internet of Things) 기술은 다양한 분야에서 혁신적으로 활용되고 있으며, 특히 자산 관리, 재해 관리, 기상 관측 분야에서의 성장세가 돋보인다. 이러한 분야에서는 실시간으로 대상의 위치와 상태를 정확히 파악하고, 기존 센서로 감지하기 어려운 상황에서도 다양한 데이터를 수집할 필요가 있다. 이를 위해 위성항법시스템 기술의 활용이 필수적이며, 이 기술을 통해 자산의 효율적인 관리, 재해 예방 및 대응, 정확한 기상 상황 예측 등이 가능하다. 본 논문은 AI 또는 IoT를 접목한 다양한 분야 중 자산관리, 재난 관리, 기상 관측 분야에서 위성항법시스템 기술이 적용된 최신 동향을 조사한 결과를 제시하고 분석한다.

화재 탐지 영역의 이미지와 동영상 인식 사이 인공지능 모델 성능 비교 연구 (A Comparative Study on Artificial in Intelligence Model Performance between Image and Video Recognition in the Fire Detection Area)

  • 이정록;이대웅;정서현;정상
    • 한국재난정보학회 논문집
    • /
    • 제19권4호
    • /
    • pp.968-975
    • /
    • 2023
  • 연구목적: 화재 탐지시 불꽃/연기의 오탐지율이 높은 것을 확인하고 오탐지율을 낮추기 위해 화재 상황을 인식하여 분류하는 방법과 데이터셋을 제안하고자 한다. 연구방법: 동영상을 학습데이터로 활용하여 화재 상황의 특징을 추출하여 분류모델에 적용하고, 평가는 한국정보화진흥원(NIA)에서 진행하는 화재 데이터셋을 이용하여 Yolov8, Slowfast의 모델 성능을 비교 및 분석하였다. 연구결과: YOLO는 배경의 영향에 따라 탐지 성능이 민감하게 변화하며, 화재의 규모가 너무 크거나 작을 때에도 화재를 제대로 감지하지 못했다. SlowFast는 동영상의 시간 축을 같이 학습하기 때문에 비정형 객체에 대해 주변이 흐리거나 밝아 형상을 명확하게 유추할 수 없는 상황에서도 우수하게 화재를 탐지하는 것을 확인했다. 결론: 화재 탐지율은 이미지 데이터 방식보다는 동영상 기반의 인공지능 인식(Detection) 모델을 활용했을 때 더 적절했음을 확인했다.

다종 복합센서 정보를 활용한 도심 생활안전 이상감지 서비스 구축방안 연구 (A Study on the Establishment of Urban Life Safety Abnormalities Detection Service Using Multi-Type Complex Sensor Information)

  • 최우철;장봉주
    • 한국재난정보학회 논문집
    • /
    • 제20권2호
    • /
    • pp.315-328
    • /
    • 2024
  • 연구목적: 본 논문은 CCTV에서 확인하기 어려운 도심 생활안전 이상상황을 감지하기 위해 다종 복합 센서 정보를 활용한 서비스 구축방안을 제시하는데 목적이 있다. 연구방법:본 연구는 실제 테스트베드 데이터를 기반으로 서비스 시나리오를 선정하고, 주요 수요처인 지자체 스마트도시통합운영센터 운영자를 대상으로 서비스 중요도 분석을 수행하였다. 연구결과:서비스 시나리오는 크게 주야간 동적 객체 감지, 급격한 객체의 온도변화 감지, 시계열적 객체의 상대 온도변화 감지 유형으로 도출되었다. AHP 분석 결과, 사람, 차량 등 동적객체로 인한 보행, 모빌리티 충돌 위험상황 서비스와 즉각적인 대형 재난으로 이어지는 화재 전조현상 감지 서비스의 중요도가 높게 나타났다. 결론:본 연구는 테스트베드 실데이터 기반으로 지자체에서 활용 가능한 이상감지 서비스 구축방안을 제시한 의의가 있다. 이를 통해 지자체의 서비스 도입 의사결정을 지원하는 기초자료로 활용될 것으로 판단된다.