• Title/Summary/Keyword: obese zebrafish

Search Result 2, Processing Time 0.015 seconds

Ginsenoside Rg1 suppresses early stage of adipocyte development via activation of C/EBP homologous protein-10 in 3T3-L1 and attenuates fat accumulation in high fat diet-induced obese zebrafish

  • Koh, Eun-Jeong;Kim, Kui-Jin;Choi, Jia;Jeon, Hui Jeon;Seo, Min-Jung;Lee, Boo-Yong
    • Journal of Ginseng Research
    • /
    • v.41 no.1
    • /
    • pp.23-30
    • /
    • 2017
  • Background: Ginsenoside Rg1 is a class of steroid glycoside and triterpene saponin in Panax ginseng. Many studies suggest that Rg1 suppresses adipocyte differentiation in 3T3-L1. However, the detail molecular mechanism of Rg1 on adipogenesis in 3T3-L1 is still not fully understood. Methods: 3T3-L1 preadipocyte was used to evaluate the effect of Rg1 on adipocyte development in the differentiation in a stage-dependent manner in vitro. Oil Red O staining and Nile red staining were conducted to measure intracellular lipid accumulation and superoxide production, respectively. We analyzed the protein expression using Western blot in vitro. The zebrafish model was used to investigate whether Rg1 suppresses the early stage of fat accumulation in vivo. Results: Rg1 decreased lipid accumulation in early-stage differentiation of 3T3-L1 compared with intermediate and later stages of adipocyte differentiation. Rg1 dramatically increased CAAT/enhancer binding protein (C/EBP) homologous protein-10 (CHOP10) and subsequently reduced the $C/EBP{\beta}$ transcriptional activity that prohibited the initiation of adipogenic marker expression as well as triglyceride synthase. Rg1 decreased the expression of extracellular signal-regulated kinase 1/2 and glycogen synthase kinase $3{\beta}$, which are also essential for stimulating the expression of $CEBP{\beta}$. Rg1 also reduced reactive oxygen species production because of the downregulated protein level of nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidase 4 (NOX4). While Rg1 increased the endogenous antioxidant enzymes, it also dramatically decreased the accumulation of lipid and triglyceride in high fat diet-induced obese zebrafish. Conclusion: We demonstrated that Rg1 suppresses early-stage differentiation via the activation of CHOP10 and attenuates fat accumulation in vivo. These results indicate that Rg1 might have the potential to reduce body fat accumulation in the early stage of obesity.

Effect of Scytosiphon lomentaria Ethanol Extracts on Myostatin Activity and Zebrafish Obesity Induced by High Feeding (고리매(Scytosiphon lomentaria) 에탄올 추출물이 마이오스타틴 활성과 고 급식으로 유도된 비만 제브라피쉬에 미치는 영향)

  • Jung, Jun Gyo;Kim, Jae Hong;Kim, Jeong Hwan;Kim, Yong Soo;Jin, Deuk-Hee;Jin, Hyung-Joo
    • Journal of Life Science
    • /
    • v.31 no.8
    • /
    • pp.699-709
    • /
    • 2021
  • Muscle mass improvement through lifestyle modification has been shown to reduce the risk of metabolic syndrome. This study examined the capacity of ethanol extracts of Scytosiphon lomentaria (SLE) to suppress the bioactivity of myostatin, a potent negative regulator of skeletal muscle mass, as well as the effect of SLE treatment on metabolic homeostasis in obese zebrafish induced by high feeding. A total of 10 ㎍/ml SLE completely blocked myostatin (1 nM/ml) signaling in the pGL3-(CAGA)12 luciferase assay and suppressed myostatin-induced Smad2 phosphorylation in the Western blot analysis. In the zebrafish larvae analysis, the whole body glucose concentration of the high feeding control (HFC) group was significantly higher than that of the normal feeding control (NFC) group. However, the glucose levels of the high feeding group treated with 12.5 ug SLE and of the high feeding group treated with 18.75 ug SLE were similar to those of the NFC group. The mRNA expression level of the GLUT2 gene of the HFC group was significantly lower than that of the NFC group. SLE treatment restored the expression of the GLUT2 gene to a level that was close to that of the NFC group, indicating that SLE is capable of regulating glucose levels in zebrafish larvae. The current results highlight the potential of SLE as a natural MSTN inhibitor and supplement that can be used to facilitate the treatment of metabolic syndrome.