• Title/Summary/Keyword: oakwood

Search Result 4, Processing Time 0.02 seconds

Pb(II) Removal from Aqueous Solutions Using Pinewood and Oakwood (소나무와 참나무를 이용한 Pb(II) 제거)

  • Um, Byung-Hwan;Jo, Sung-Wook;Park, Seong-Jik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.450-459
    • /
    • 2014
  • Crushed pinewood and oakwood were studied as an adsorbent for Pb(II) removal from aqueous solution. Batch adsorption experiments were carried out to describe the effects of contact time, initial Pb(II) concentration, pH, competing cations, and adsorbent dosage on the Pb(II) adsorption process. Kinetic studies revealed that the Pb(II) adsorption process for pinewood and oakwood followed both pseudo first and pseudo second order model. The Fruendlich model best described equilibrium adsorption data with correlation coefficients ($R^2$) of 0.956 and 0.950 for pinewood and oakwood. The maximum adsorption capacity of Pb(II) onto pinewood and oakwood was found to be 16.853 and 27.989 mg/g, respectively. The Pb(II) adsorption onto both pinewood and oakwood was increased as pH increased in the pH range 3-9. The presence of cations such as $Na^+$, $Ca^{2+}$, and $Al^{3+}$ decreased Pb(II) adsorption. The Pb(II) removal was greater in seawater than deionized water, resulting from the presence of $CO{_3}^{2-}$ and $OH^-$ ions in seawater. This study showed that pinewood and oakwood have a potential application in the remediation of Pb(II) contaminated water.

Elemental Chlorine free Bleaching of Kraft Pulps with Enzymes( I )-Oakwood Kraft Pulp- (효소를 이용한 크라프트펄프의 무감소표백-신갈나무 크라프트펄프-)

  • 강진하;박성종;임현아
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.1
    • /
    • pp.44-58
    • /
    • 1998
  • This study was carried out to bleach the Oakwood kraft pulp without the elemental chlorine using the xylanase or wastewater(We : wastewater enzymes) effluented from the submerged biofilter reactor containing the fungi, Phanerorhaete sordida YK-624. So in this research, the proper treatment conditions (pH, temperature, dosage and time) were investigated respectively. And after the various kinds of multistage bleaching of pulps, the properties of pulps were tested. From the experimental results, we can conclude as follows. In the treatments of Oakwood kraft pulps with xylanase, the proper pH, temperature, enzyme dosage and time were 8.0, $35^{\circ}C$ , 400 EXU/kg and 1 hr. respectively. And in the case of treatment with a wastewater(We) effluented from the submerged biofilter reactor, the proper pH, temperature and time were 5.5, $37^{\circ}C$ and 2 hr. respectively. On the other hand, Oakwood kraft pulps were bleached by the method of a multistage bleaching using xylanase or We instead of elemental chlorine Consequently the strengthes and brightnesses of pulps bleached by the method mentioned above were lower than those of pulp bleached by the conventional method using the elemental chlorine. But it is possible to improve the brightnesses through the increase of chlorine dioxide dosage or use of hydrogen peroxide in the final bleaching stage.

  • PDF

Physicochemical Properties and Copper(II) Ion Adsorption Ability of Wood Charcoals (소나무 및 참나무 백탄의 물성과 구리(II) 이온 흡착 효과)

  • Lee, Oh-Kyu;Jo, Tae-Su
    • Journal of Korea Foresty Energy
    • /
    • v.25 no.2
    • /
    • pp.55-63
    • /
    • 2006
  • Physicochemical properties and copper (II) adsorption ability of two oakwood and two pinewood charcoals, which were manufactured in traditional mode and commercialized in Korea, were examined pHs of these four wood charcoals were between 9.5 and 9.8. In the elemental contents of the wood charcoal, the contents of carbon atom (C) in the four samples were between 85-90%, while the content of hydrogen atom (H) in pinewood charcoal of the company 'S' was 1.62% and this value was three time higher than those of other samples. For iodine adsorption and specific surface area, the pinewood charcoal sample showed higher values than those of the oakwood charcoals. In the copper (II) ion adsorption in aqueous solution, the adsorption rate was increased by the increase of treated amounts of charcoal, treatment time, and pH.

  • PDF

Effect of Hydrogen Peroxide on Pretreatment of Oakwood in a Percolation Process (Percolation 공정에서 참나무의 전처리에 과산화수소가 미치는 영향)

  • 하석중;김성배;박순철
    • KSBB Journal
    • /
    • v.14 no.3
    • /
    • pp.358-364
    • /
    • 1999
  • The effect of hydrogen peroxide on pretreatment of oakwood was investigated. Reaction temperature was $170^{\circ}C$ and reaction solutions used in pretreatment were aqueous ammonia, sulfuric acid and pure water. When 10% ammonia solution was used, the extents of delignification and hemicellulose recovery were 55% and 26%, respectively. These values were significantly higher as delinigfication and lower as hemicellulose recovery than those of acid hydrolysis. To overcome this problem, hydrogen peroxide was added into ammonia solution stream to increase hemicellulose recovery. But delignification and hemicellulose recovery were not increased as much as hydrogen peroxide loading was increased. And as hydrogen peroxide loading was increased, the decomposition of sugars solubilized from hemicellulose and cellulose were increased. So there were significant differences between the total amount in solid residue and liquid hydrolyzate, and the total amount in the original biomass. It was found that hydrogen peroxide added was reacted with substrate packed mostly in the front part of reactor. In order to increase hemicellulose recovery, it was necessary to treat with acidic solution than with alkali solution. Effect of hydrogen peroxide was higher in water than acid solution.

  • PDF