• Title/Summary/Keyword: nylon6

Search Result 507, Processing Time 0.024 seconds

Disordering of Clay Layers in the Nylon 6/Clay Nanocomposites Prepared by Anionic Polymerization

  • Park Jung Hoon;Kim Woo Nyon;Kye Hyoung-san;Lee Sang-Soo;Park Min;Kim Junkyung;Lim Soonho
    • Macromolecular Research
    • /
    • v.13 no.5
    • /
    • pp.367-372
    • /
    • 2005
  • As a preliminary work for the preparation of nylon 6/c1ay nanocomposites by reactive extrusion, nylon 6/c1ay nanocomposites were prepared by anionic polymerization in a flask. In order to investigate the effect of the intercalation of clay layers, the clay feeding times, such as in pre-mixing where the clay was fed before initiation of polymerization and in after-mixing method where the clay was fed after initiation of polymerization, were changed. The appearance of the WAXD peak of nanocomposites prepared by the pre-mixing method was obvious and the tensile strength was decreased compared with that of pure nylon 6, which indicates that the clay layers were not dispersed and distributed. During the preparation of the nanocomposites by the after-mixing method, disordering of the clay layers was observed with increasing clay addition time and was suspected to result from the rapid polymerization of nylon 6 within the clay layers.

Dyeing Properties and Color Fastness of Cotton, Nylon and Polyester Dyed with Vat Dyes (배트염료에 의한 면, 나일론 및 폴리에스테르 섬유의 염색성과 견뢰도)

  • Jeong, Dong-Seok;Choi, Mi-Nam;Jung, Dae-Ho;Gwon, Oh-Chul;Lee, Mun-Cheul
    • Textile Coloration and Finishing
    • /
    • v.17 no.6 s.85
    • /
    • pp.11-19
    • /
    • 2005
  • Textile dyeing with vat dyes has the highest color fastness although one and the same dye of all vat dyes cannot always satisfy every color fastness requirement. So we examined cotton, nylon 6, and polyester fabrics dyed with vat dyes. Cotton, nylon 6 and polyester fabrics were dyed with vat dyes such as C. I. Vat Blue 1, Blue 19, Black 9, Green 1, Orange 2, and Violet 1 containing sodium hydrosulfite and NaOH. Oxidation were carried out by a sodium peroxoborate after dyeing. The dyed materials were soaped at the boil after oxidation. Especially hydrolysis and overreduction for dyed polyester with vats dyes containing -NHCO- and -NH- groups such as C. I. Vat Blue 6, Black 25, Black 27, Red 10, and Green 3 occurred. It seems that these phenomena are due to a high dyeing temperature. Wash and rubbing fastness of nylon are higher than that of cotton and polyester. Light fastness of cotton is higher than that of polyester and nylon.

Dyeing Properties and Ultraviolet-cut Ability of Silk and Nylon Fabrics Dyed with Rhus verniciflua Extracts (옻나무 추출액에 의한 견직물, 나일론 직물의 염색성과 자외선 차단성)

  • Choi, In-Ryu
    • The Research Journal of the Costume Culture
    • /
    • v.16 no.1
    • /
    • pp.158-165
    • /
    • 2008
  • The purpose of this study was to investigate the dyeing property and ultraviolet-cut ability on silk 100% and nylon 100% fabrics dyed with Rhus verniciflua extracts. This study was investigated K/S values, surface color, washing fastness, dry cleaning fastness and ultraviolet-cut ability of the silk and nylon fabrics dyed with Rhus verniciflua extracts under the various dyeing conditions. As mordanting were used Tin(II) Chloride dihydrate $(SnCl_2{\cdot}2H_2O)$, Copper(II) sulfate pentahydrate$(CuSO_5{\cdot}5H_2O)$, Iron(II)Chloride$(FeC_2{\cdot}4H_2O)$. pH was adjusted by sodium carbonate$(Na_2CO_3)$ and formic acid(HCOOH). The optimum dyeing temperature, dyeing time, and pH of the silk fabrics dyed with Rhus verniciflua extracts were $90^{\circ}C$, 100min, and in the nylon fabrics were $90^{\circ}C$, 45min. It were colored(munsell value) 6.4Y 7.5/4.1 in the silk fabrics and colored 4.3Y 6.6/5.9 in the nylon fabrics dyed with Rhus verniciflua extracts. Washing fastness and dry-cleaning fastness in the silk and nylon fabrics dyed with mordanting agent improved in $4{\sim}5$ grade. UV-A test showed that nylon fabrics a high rate of 92% with Rhus verniciflua extracts.

  • PDF

Removal of Hemoglobin from Acrylic Acid Grafted Nylon Fabric The Removal and the State of Adhesion of Hemoglobin on Grafted Nylon Fabric- (아크릴산 그라프트 중합한 나일론 직물의 헤모글로빈 오구 세척성 -그라프트 나일론 직물에 대한 헤모글로빈 부착상태와 세척성-)

  • 오수민;김인영;송화순
    • Textile Coloration and Finishing
    • /
    • v.11 no.3
    • /
    • pp.41-48
    • /
    • 1999
  • The removal of hemoglobin from acrylic acid grafted Nylon fabrics has been investigated. In order to change detergency of Nylon 6 fabric, acrylic acid(AA) were graft copolymerized on Nylon fabric using ammonium persulfate(APS) as a initiator, and then acrylic acid grafted Nylon was treated with NaOH solution. The graft ratio increased linearly with increasing acrylic acid concentration. The graft ratio was the highest when the concentration of APS was 0.05%, and it decreased as the concentration of APS increased. The surface of Nylon fabric became rough due to graft. Moisture regain was increased by graft and alkaline treatment, contact angle was also improved compared with the ungrafted. The hemoglobin was easily solubilized and removed from grafted Nylon fabric, while it was difficult to remove hemoglobin from ungrafted Nylon fabric. The effects of graft on removal of hemoglobin was related with increase of moisture regain and transformation of COOH to COONa by alkaline treatment.

  • PDF

Basic Study on the Nonocomposites by using the MWNT(Multiwalled Nanotube) (MWNT를 이용한 나노복합체에 대한 기초적 연구)

  • Kang, Young-gu;Kweon, Hyunkyu;Choi, Seong-Dae;Noh, In-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.104-109
    • /
    • 2009
  • In this paper, polymer nanocomposites were fabricated by mixing fire-resistant and high pseudoplastic Nylon 6,6 with MWNT(Multiwalled Nanotube), which has mechanical, electrical, and heat stable properties. The experiments were performed in order to investigate their mechanical and electrical properties depending on the level of MWNT and the presence of acid treatment on Nylon 6.6. Morphology of polymer nanocomposites was observed using Scanning Electron Microscopy technique. The results indicate that the polymer nanocomposites have the best mechanical and electrical properties in the optimal conditions of Nylon 6.6 and MWNT(10wt%).

  • PDF

Investigation about the Wear Characteristics of Nylon Pinions Against Steel Gears by SEM (SEM을 이용한 나일론피니언의 마멸특성 고찰)

  • Kim, Choong-Hyun;Ahn, Hyo-Sok;Chong, Tae-Hyong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1159-1168
    • /
    • 2002
  • Power-transmission Nylon pinions against steel gears fur different pitch line velocities was studied with a power circulating gear test rig under unlubricated condition by SEM(Scanning Electron Microscope). The wear characteristics of Nylon pinions varied significantly with the pitch line velocity and applied load. Wear occurred most severely at the regions including pitch circle and root circle of Nylon pinions. It is confirmed that Nylon pinions are able to be used fer power-transmission under limited conditions.

Low density polyethylene/nylon-6 reactive blend using corotating twin screw extruder (동방향 이축압출기를 이용한 저밀도폴리에틸렌/나일론-6 반응블렌드)

  • Ryu, Sung-Hun;Chung, Young-Bae
    • Elastomers and Composites
    • /
    • v.40 no.3
    • /
    • pp.159-165
    • /
    • 2005
  • Reactive monomer, glycidyl methacrylate (GMA), was grafted onto low density polyethylene (LDPE) using peroxide and then reactive blend with nylon-6 was rallied out by corotating twin screw extruder. Grafting of GMA was identified using FT-IR. Graft ratio or GMA increased with reaction temperature, peroxide concentration and styrene comonomer concentration. It is observed that tensile elongation and tensile strength or LDPE-g-GMA/nylon-6 blend were higher than those of LDPE/nylon-6 blend. Morphology of blend was analyzed using SEM.

Effect of Graphene Oxide on the Properties of Its Composite Fibers with PMMA and Nylon 6,6 (고강도 PMMA 및 나일론 - 산화그래핀 복합재료 섬유의 제조 및 특성평가)

  • Hwang, Sang-Ha;Lee, Dong-Wook;Baek, Jong-Beom;Shin, Hyeon-Suk;Park, Young-Bin
    • Composites Research
    • /
    • v.24 no.4
    • /
    • pp.1-4
    • /
    • 2011
  • In this work, we successfully fabricated graphene oxide (GO) and GO-based PMMA composite fiber and nylon films. Dynamic mechanical and tensile properties of PMMA-GO composite fiber showed that GO is efficient reinforcement for polymer matrices. However, Nylon 6,6-GO composite films showed low reinforcement efficiency in terms of dynamic mechanical and tensile properties due to the colloid instability of GO in formic acid at a low pH level.

The Mechanical Properties and Crystal Structure of Co-Nylon 6 (Co-Nylon 6사의 구조와 물성)

  • Park, Myung-Soo
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.11a
    • /
    • pp.27-27
    • /
    • 2011
  • 일반 나일론6 폴리머 대비 수축률이 높은 수축률을 가질 수 있는 나일론 고수축 개질 폴리머를 개발하고 이를 이용하여 고권축/고벌키 특성이 우수한 세섬 20d급의 나일론/Co-나일론계 고권축 소재를 개발하기 위하여 나일론 개질폴리머의 구조와 물성에 대한 연구 조사가 필요하다. 기존 나일론6 중합은 카프로락탐만을 사용하여 중합되므로 선형의 분자 구조를 가지게 되어 섬유형태로 방사했을 경우 수축률이 균일하게 되므로 수축율이 다른 나이론 폴리머를 만들기 위해서는 카프로락탐 외에 폴리머 분자구조를 변화 시킬 수 있는 공중합 모노머를 사용하여 랜덤하게 공중합을 해야한다. 일반적으로 사용되는 공중합 모노머는 말단이 -COOH나 -NH2로 되어서 카프로락탐과 반응할 수 있는 물질이 많이 사용되어 진다. 최근 수축률을 높이기 위한 공중합 모노머로는 SSIPA나 Meta xylene diamine과 같이 비 선형구조를 가지는 모노머를 사용하여 폴리머의 구조를 변화시켜 수축율을 높이고 있다. 이를 일반 나이론 6와 사이드 바이 사이드 방사를 하게 되면 두 폴리머의 수축율 차이로 인해 미케니컬 수축력을 발현시키고 있다. 따라서 본 연구에서는 스포츠/레저용 초경량 Nylon 박지에 적합한 자발신장 개념인 Nylon6 잠재권축 소재를 개발하기 위하여 $14^D$수준의 Co-Nylon6의 구조와 물성을 조사 검토하여 이를 실제 현장에 자료를 제공하는 것을 목적으로 하였다.

  • PDF

Preparation and Characterization of Nylon 6-Morpholinone Random Copolymers Based on ε-Caprolactam and Morpholinone (바이오 기반 ε-Caprolactam과 Morpholinone을 사용하여 중합한 나일론 6-모폴리논 랜덤 공중합체의 제조와 특성평가)

  • Kim, Hye Young;Ryu, Mi Hee;Kim, Dae Su;Song, Bong-Keun;Jegal, Jonggeon
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.714-719
    • /
    • 2014
  • Bio-based nylon 6-morpholinone random copolymers were prepared by the anionic ring opening polymerization of ${\varepsilon}$-caprolactam and morpholinone, both of which were prepared from lysine and glucose, respectively. From this work, a new biomass based nylon 6 with improved hydrophilicity was prepared. Optimizing the polymerization condition, copolymer with a viscosity-average molecular weight of 30000 g/mol was prepared, with a yield of 80%. It was possible to improve the hydrophilicity of nylon 6 by its copolymerization with morpholinone. The prepared nylon 6-morpholinone random copolymers were then characterized using several analytical methods such as DSC, TGA, XRD, viscosity measurement with U-shaped glass capillary viscometer and contact angle measurement.