• Title/Summary/Keyword: nutritive quality

Search Result 243, Processing Time 0.022 seconds

Harvesting schedule effects on forage yield and nutritive values in low-lignin alfalfa

  • Xu, Xuan;Min, Doohong
    • Journal of Animal Science and Technology
    • /
    • v.64 no.2
    • /
    • pp.262-273
    • /
    • 2022
  • Under the four-cut system, low-lignin alfalfa (Medicago sativa L.) may extend harvesting intervals improving harvest management flexibility and producing forage products with higher nutritive values. The objective of this study was to compare forage yield and nutritive values of low-lignin and conventional alfalfa varieties when applied to six different harvest schedules in the first (2016) and second (2017) production years. There were 12 treatments of two alfalfa varieties as whole plots and six harvest schedules as subplots. Across harvest schedules, there were four cuttings in two production years. Three harvest intervals including "Standard" (high quality, HQ), "Standard+5-day" (medium quality, MQ), and "Standard+10-day" (high yield, HY) were chosen for the first cutting, and 30-day (HQ) and 35-day (HY) for the second cuttings. The third and fourth cuttings in 2016 were timed near final harvest date and in 2017 occurred at 35-day (MQ) and 40-day (HY). Variety by harvest schedule interaction was not significant, but the whole plot and sub-plot effects were significant. Hi-Gest 360 was consistently higher in nutritive value and with a similar yield as Gunner. Harvest schedules did not consistently differ in forage yield and nutritive values. HS-1 ("Standard" + 35-day + Medium Quality + High Yield) with shorter first two cutting intervals provided lower acid detergent fiber (ADF), neutral detergent fiber (NDF), higher relative feed value (RFV), and similar forage yield compared to other schedules. HS-1 had the highest economic incomes when considering RFV and yield among the six different harvest schedules.

Nutritive Values of Major Feed Ingredient in Tropics - Review -

  • Winugroho, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.3
    • /
    • pp.493-502
    • /
    • 1999
  • Majority of livestocks are kept in the tropics. Demand for animal products (meat and milk) is continuously increasing and is related to human population growth. Consequently, potential feeds should be continuously identified particularly on their nutritive values. Crop residues and agricultural by-products are the main feed sources for feeding livestock in the tropics. Their nutritive values ranging from low to medium quality level although Some agricultural by-products such as cotton seed meal and coconut meal are rich in nitrogaen contents. From literatures, nutritive values in these ingredients are mainly based on their chemical composition and to some extent based on limited number of in vivo studies. However, optimum of inclusion in the diet is suggested. Development of tree legumes should be thoroughly considered since they grow well in most tropical regions. In order to improve nutritive value of tropical feeds, biological treatments should be considered. Effect of secondary compounds decreasing efficiency of nutrient utilization in the rumen, to some extent could be reduced by introducing probiotics.

Effects of Cellulase and Brewers' Grains Addition on the Fermentation Quality and Nutritive Value of Barley Straw Silage

  • Ridla, M.;Uchida, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.6
    • /
    • pp.575-580
    • /
    • 1997
  • Two experiments were carried out to evaluate the effects of cellulase and brewers' grains addition on improvement of the fermentation quality and the nutritive value of barley straw silages made from dried or fresh straw. In Exp. I : 1 kg dried barley straw + 2 kg wet brewers' grains + 0 (I-0), 2 (I-2), 4 (I-4), 6 (I-6), and 8 (I-8) g of cellulase. In Exp. II : 2 kg fresh barley straw + 2 kg wet brewers' grains + 0 (II-0), 2 (II-2), 4 (II-4), 6 (II-6), and 8 (II-8) g of cellulase. Each prepared material was ensiled into vinyl bag silos (5 L capacity) and stored for 10 (Exp. I) or 7 (Exp. II) months at $21^{\circ}C$. The fermentation quality and nutritive value of barley straw silages produced were markedly improved by mixing them with wet brewers' grains, on the other hand the effect of cellulase addition on the fermentation and reduction of the cell wall components in the silos at ensiling more effectively occurred at low dry matter silages rather than at the high ones. All silages in both Exp. I and II were found well preserved as indicated by their low pH and high lactic acid concentration. Cellulase treated silages had a lower pH (p<0.05) and a higher lactic acid concentration (p<0.05) than those of without cellulase addition. NDF, ADF, and (Hemi)cellulose contents of cellulase treated silages reduced (p<0.05) compare to those of the corresponding silage without cellulase. Increasing levels of cellulase addition caused an increase in fermentation quality and reduction of cell wall components. In vitro dry mater digestibility was found similar in all silages. Fermentation quality and nutritive value of barley straw silages were improved by both wet brewers' grains and cellulase addition. Cellulase addition reduced the cell wall components silages, but did not improve the digestibility.

The Effect of Mushroom Extract as a Dietary Additive on the Nutritive Quality of Cultured Olive Flounder Paralichthys olivaceus (양식산 넙치(Paralichthys olivaceus)의 식품학적 품질 개선에 버섯추출물이 미치는 영향)

  • Shim, Kil-Bo;Kim, Ji-Hoe;Yoon, Ho-Dong;Choi, Hae-Seung;Cho, Young-Je
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.6
    • /
    • pp.785-790
    • /
    • 2011
  • This study investigated the nutritive quality of olive flounder Paralichthys olivaceus fed either moist pellet (MP) or moist pellet mixed with mushroom extract (MPME) for 6 months. There was no significant difference in crude protein or extractive nitrogen in the muscle of flounder fed MP versus MPME (P > 0.05). The total amino acid content in the muscle of flounder fed MP was $15.22{\pm}5.24$ g/100 g, compared to $19.90{\pm}2.90$ g/100 g for flounder fed MPME. Essential amino acid content was $7.04{\pm}2.21$ g/100 g in the muscle of flounder fed MP versus $8.94{\pm}2.50$ g/100 g for MPME. Total amino acid content was higher in the muscle of olive flounder fed MPME, while essential amino acid content was higher in flounder fed MP. The ratio of non-essential amino acids to essential amino acids was $0.86{\pm}0.07$ for flounder fed MP and $0.81{\pm}0.08$ for flounder fed MPME. There was no significant difference in free amino acid content and fatty acid composition. The breaking strength of muscle of olive flounder fed MP was higher ($1.44{\pm}0.51\;kg/cm^2$) than in flounder fed MPME ($1.29{\pm}0.30\;kg/cm^2$). There was no evidence that dietary additives, such as mushroom extract, increase growth rate or nutritive quality of olive flounder.

Effects of Nitrogen Application Rate on the Yields, Nutritive Value and Silage Fermentation Quality of Whole-crop Wheat

  • Li, C.J.;Xu, Z.H.;Dong, Z.X.;Shi, S.L.;Zhang, J.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.8
    • /
    • pp.1129-1135
    • /
    • 2016
  • Whole-crop wheat (Triticum aestivum L.) as forage has been extensively used in the world. In this study, the effects of N application rates on the yields, nutritive value and silage quality were investigated. The N application rates were 0, 75, 150, 225, and 300 kg/ha. The research results indicated that the dry matter yield of whole-crop wheat increased significantly with increasing N rate up to 150 kg/ha, and then leveled off. The crude protein content and in vitro dry matter digestibility of whole-crop wheat increased significantly with increasing N up to 225 kg/ha, while they no longer increased at N 300 kg/ha. On the contrary, the content of various fibers tended to decrease with the increase of N application. The content of lactic acid, acetic acid and propionic acid in silages increased with the increase of N rate (p<0.05). The ammonia-N content of silages with higher N application rates (${\geq}225kg/ha$) was significantly higher than that with lower N application rates (${\leq}150kg/ha$). Whole-crop wheat applied with high levels of N accumulated more nitrate-N. In conclusion, taking account of yields, nutritive value, silage quality and safety, the optimum N application to whole-crop wheat should be about 150 kg/ha at the present experiment conditions.

Improvement of Fermentation and Nutritive Quality of Straw-grass Silage by Inclusion of Wet Hulless-barley Distillers' Grains in Tibet

  • Yuan, Xianjun;Yu, Chengqun;Shimojo, M.;Shao, Tao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.4
    • /
    • pp.479-485
    • /
    • 2012
  • In order to develop methods that would enlarge the feed resources in Tibet, mixtures of hulless-barley straw and tall fescue were ensiled with four levels (0, 10%, 20%, and 30% of fresh weight) of wet hulless-barley distillers' grains (WHDG). The silos were opened after 7, 14 or 30 d of ensiling, and the fermentation characteristics and nutritive quality of the silages were analyzed. WHDG addition significantly improved fermentation quality, as indicated by the faster decline of pH, rapid accumulation of lactic acid (LA) (p<0.05), and lower butyric acid content and ammonia-N/total N (p<0.05) as compared with the control. These results indicated that WHDG additions not only effectively inhibited the activity of aerobic bacteria, but also resulted in faster and greatly enhanced LA production and pH value decline, which restricted activity of undesirable bacteria, resulting in more residual water soluble carbohydrates (WSC) in the silages. The protein content of WHDG-containing silages were significantly higher (p<0.05) higher than that of the control. In conclusion, the addition of WHDG increased the fermentation and nutritive quality of straw-grass silage, and this effect was more marked when the inclusion rate of WHDG was greater than 20%.

Forage Quality Management of Kura Clover in Binary Mixtures with Kentucky Bluegrass, Orchardgrass, or Smooth Bromegrass

  • Kim, B.W.;Albrecht, K.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.3
    • /
    • pp.344-350
    • /
    • 2011
  • Kura clover (Trifolium ambiguum M. Bieb.) is a potentially useful perennial legume because of its excellent nutritive value and persistence under environmental extremes. However, information about forage quality of kura clover - grass mixtures adapted to the North-Central USA is limited. Objectives of this research were to determine forage nutritional value of kura clover-grass mixtures under different harvest frequency and cutting height regimes. 'Rhizo' kura clover was grown alone and in binary mixtures with 'Park' Kentucky bluegrass (Poa pratensis L.), 'Comet' orchardgrass (Dactylis glomerata L.), and 'Badger' smooth bromegrass (Bromus inermis Leyss.) at the Arlington Agricultural Research Station located near Madison, WI. Three harvest frequencies ($3{\times}$, $4{\times}$, or $5{\times}$ annually) and two cutting heights (4- or 10-cm) were imposed on each binary mixture and on kura clover grown alone. Higher nutritive value was observed in the binary mixtures with more frequent harvest and lower cutting height. Averaged over 3 years and all harvest frequency and cutting height treatments, the nutritive value of the Kentucky bluegrass and smooth bromegrass mixtures was superior to that of the orchardgrass mixture ($410\;g\;kg^{-1}$ NDF and $194\;g\;kg^{-1}$ CP in the Kentucky bluegrass mixture; $405\;g\;kg^{-1}$ NDF and $188\;g\;kg^{-1}$ CP in the smooth bromegrass mixture; $435\;g\;kg^{-1}$ NDF and $175\;g\;kg^{-1}$ CP in the orchardgrass mixture). All of the mixtures and harvest management systems evaluated in this study produced forage with quality equivalent to "grade one" alfalfa hay and suitable for highproducing livestock, even though the highest quality was observed in the Kentucky bluegrass mixture with $5{\times}$ harvesting at the shorter cutting height.

EFFECT OF UREA ON WET RICE STRAW FOR PRESERVING ITS KEEPING QUALITY AND NUTRITIVE VALUE IN CATTLE DIETS

  • Chowdhury, S.A.;Huque, K.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.2
    • /
    • pp.181-187
    • /
    • 1996
  • About 8 million tons of straw (dry matter) become rotten during the monsoon(June to August) season in Bangladesh. The possibility of preserving straw with urea, under wet condition during dry period (December to May) and its utilization by cattle has been studied. Five tons of fresh and wet(600g DM/kg material) rice straw were preserved for six months, with 5% urea(W/W) in either dome or rectangular shaped heap without any polythene cover. The preservation quality, acceptability and nutritive value of preserved straw were then comparted with that of dry straw in growing cattle. In both types of heaps, straw was excellently preserved having strong ammonia smell,dark brown in colour with no fungal infestation. Urea preservation of straw increased its CP and ADF content. Preserved straw was readily accepted by the animals and they were healthy throughout the experimental period. Compared to dry straw, urea preserved straw had nonsignificantly higher rumen degradability, straw intgake and growth rate. Similarly, digestibilities of DM(p<0.01), OM(p<0.01) & ADF(p<0.01) were significantly higher in the preserved than the dry straw. It was concluded that wet straw with relatively lower moisture(400 to 500 g/kg straw) content can be readily preserved by using urea without being covered with polythene. Whether the same phenomenon occurs in the preservation of fresh and weet rice straw with relatively higher moisture(600 to 700 g/kg straw) content is yet to be determined.

Bacillus subtilis Fermentation for Enhancement of Feed Nutritive Value of Soybean Meal

  • Kook, Moo-Chang;Cho, Seok-Cheol;Hong, Young-Ho;Park, Hoon
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.2
    • /
    • pp.183-188
    • /
    • 2014
  • In order to increase the nutritional quality of soybean meal (SBM) as an animal feed, Bacillus subtilis TP6, a previously isolated strain from an Indonesian traditional fermented soybean food, Tempeh, was used as a starter organism for solid-state fermentation. In the pre-treated SBM with water content of 60% (v/w), B. subtilis TP6 was grown to a maximum viable cell number of $3.5{\times}10^9CFU/g$. Compared to control, crude protein in Bacillus fermented SBM was increased by 16%, while raffinose, stachyose, and trypsin inhibitors were reduced by 31, 37, and 90%, respectively. The Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed that proteins in the fermented SBM were remarkably hydrolyzed into smaller molecular masses, resulting in a decrease in large sized proteins. Our data suggested that B. subtilis fermentation could increase the nutritive value of SBM through reduction of anti-nutritive factors and improvement of protein quality by hydrolysis of soy protein. In addition, B. subtilis TP6 produced a functional ingredient, poly-${\gamma}$-glutamic acid which has various health benefits.

Effects of Chemical Foliar Herbicide on Weed Control in Alfalfa Field

  • Seung Min Jeong;Ki Won Lee;Hyung Soo Park
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.44 no.3
    • /
    • pp.140-144
    • /
    • 2024
  • This study aims to contribute to resolving the critical issue of weed management in newly established alfalfa fields, study has been conducted on effective herbicide use. The study evaluated the impact of various domestically available foliar herbicides on alfalfa phytotoxicity, weed control, yield, and nutritive value. The experiment was designed in a randomized complete block design with four treatments. Alfalfa 'SW 5615' seeded in the spring of 2024 on a 1 ha field (March 18), with herbicide treatments including fluazifop-P-butyl (FPB), bentazone (BEN), and a mixture of these herbicides (MIX). Herbicide efficacy, alfalfa yield, and nutritive value were assessed 30 days post-application. Results indicated that the MIX treatment achieved superior weed control comparable to hand weeding (HW), although it exhibited higher phytotoxicity, requiring extended recovery periods. While MIX led to lower overall yield, it enhanced alfalfa purity, resulting in higher crude protein (CP) content and relative feed value (RFV) compared to other treatments. The study concludes that despite the potential for increased phytotoxicity, mixed herbicide treatments could offer a strategic advantage in enhancing the quality of alfalfa feed through effective weed management, thereby improving CP and RFV, critical factors for the nutritional value of alfalfa. These findings provide valuable insights for optimizing weed management practices in alfalfa cultivation, suggesting that mixed herbicide application, although associated with increased phytotoxicity on the plants, could improve the overall feed quality by reducing weed competition.