• Title/Summary/Keyword: nutrient nitrogen

Search Result 1,578, Processing Time 0.026 seconds

Analysis of Amino Acid, Fatty Acid, and Vitamin in Korean Pine (Pinus koraiensis) Seeds (잣 종자(種子)의 아미노산(酸), 지방산(脂肪酸), 비타민 분석(分析))

  • Han, Sang Sup;Hwang, Byung Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.79 no.4
    • /
    • pp.345-351
    • /
    • 1990
  • The seeds of Korean pine, Pinus koraiensis, had been used as one of edible fruits for long time, but its chemical analysis of the nutrient components was extremely limited. The purpose of this study is to analyze the content of chemical components of Korean pine seeds. The results obtained are as follows : 1. In general analysis of Korean pine seeds, moisture is 4.4%, crude protein 18.3%, crude fat 67.3%, crude fiber 4.7%, ash 2.2%, and nitrogen-free extract 3.4%, respectively, 2. The Korean pine seed contained 18 different kinds of amino acid : lysine, histidine, arginine, aspartic acid, threonine, serine, glutamic acid, proline, glycine, alanine, valine, methionine, isoleucine, leucine, tyrosine, phenylalanine, cysteic acid, and tryptophan. The glutamic acid is highest content among 18 kinds of amino acid. 3. The Korean pine seed contains all the essential amino acids such as arginine, histidine, lysine, threonine, valine, methionine, isoleucine, leucine, phenylalanine, and tryptophan. 4. The Korean pine seed contains 13 different kinds of fatty acid such as myristic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, arachidic acid, 9-icosenoic acid, 9, 11-icosenoic acid, 8, 11, 14-icosatrienoic acid, and tn-o unknown substances. Also it contains all the essential fatty acids as linoleic acid and linolenic acid. The linoleic acid is highest content among 13 kinds of fatty acid. 5. The Korean pine seed contained 5 different kind., of vitamin such as vitamin A, vitamin $B_1$, vitamin $B_2$, vitamin E and niacin. The content of vitamin E is the largest among 5 kinds of vitamin.

  • PDF

Evaluation of the Large Scale Petroleum-Contaminated Site for the Remediation of Landfarming (대규모 유류오염부지에 적용된 토양경작법의 정화효율 평가)

  • Ju, Weon-Ha;Choi, Sang-Il;Kim, Jong-Min;Kim, Bo-Kyung;Kim, Sung-Gyoo;Park, Sang-Hean
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.4
    • /
    • pp.15-22
    • /
    • 2009
  • The remediation efficiency for a large scale petroleum-contaminated site was evaluated by using the Engineered Land-farming system which was consists of the following parameters; moisture & nutrient injector data, blower system, HDPE sheet and sump system. To enhance the degradation ability in the early stage, main nutrients such as nitrogen (N) and phosphorus (P) were adjusted for the site condition. As a result of the periodic tilling process, the concentration of contaminated soil was decreased to 348 mg/kg, which was lower than 500 mg/kg (regal standards) while satisfying remediation Efficiency of 82% (the maximum concentration of 1,893 mg/kg). The appropriate temperature range for an active operation was investigated between $28.9{\sim}35.6^{\circ}C$. For the contaminated soils having different initial concentration, the TPH (Total Petroleum Hydrocarbons) concentration was decreased evenly along with the CFU (Colony Forming Unit), moisture content and contaminant concentration after 38days of gratifying the legal standards of under 500 mg/kg.

Response of N. Sources to Nutrient Uptake of Tobacco Plant (질소원(窒素源)에 따른 담배식물의 양분흡수반응(養分吸收反應))

  • Lee, Yun-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.4
    • /
    • pp.413-418
    • /
    • 1985
  • Tobacco plant(8-leaf seedlings) were grown on water culture fertilized with different N sources ($NO_3-N$, $NH_4-N$, $NO_3+NH_4-N$) during 15 days. Daily uptake of nutrients and inorganic constituents in plants were investigated in relation to growth responses of them. 1. Nitrate-fed plant showed higher daily uptake of inorganic cations than those in other treatments, and reached about two times higher uptake of nitrogen and three times more uptake of cations (K, Ca, Mg). Potassium was preferentially uptaken at a very fast rate from the beginning after treatment. Also $NO_3-N$ tended to be taken up selectively by the plant from the mixture of nitrate and $NH_4-N$. 2. The initial pH (pH 6.0) of culture medium drastically changed into acid (pH 4.0) in the $NH_4-N$ medium, but into slightly higher (pH 6.4) in the nitrate when measured after exposure of 24 hours. The mixture also tended to show an acidity but much weaker than $NH_4-N$ solution. 3. Nitrate-fed plant had a normal growth pattern but $NH_4-N$ fed plant almost stopped growing. Those plants containing both nitrate and ammonium N were also showed very poor growth.

  • PDF

Effect of Different Cultivation Systems on Soil Glomalin Content and Nutrient Uptake of Strawberry in Controlled Horticultural Land (시설 딸기 재배형태가 토양 글로말린 함량과 양분흡수량에 미치는 영향)

  • Min, Se-Gyu;Lee, Seung-Ho;Nam, Sang-Hoe;Choi, Yong-Uk;Lee, Su-Yeol;Park, Su-Seon;Lee, Seong-Tae;Kim, Eon-Seok;Song, Won-Doo;Lee, Young-Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.452-456
    • /
    • 2011
  • Glomalin has important roles in soil aggregation in agricultural lands including controlled horticultural lands. The objective of this study was to measure total glomalin content of soils treated conventional farming system (CFS), conventional farming system without pesticides (CFSWP), and organic farming system (OFS) for strawberry cultivation under greenhouse in Goseong-gun, Korea. The average concentration of total glomalin in the soils was significantly higher in the OFS ($2.00mg\;g^{-1}$) compared to the CFS ($1.68mg\;g^{-1}$). In addition, soil microbial biomass C content was 4.9 times higher in the OFS ($821mg\;kg^{-1}$) compared to the CFS ($169mg\;kg^{-1}$). Nitrogen uptake rate of strawberry was higher in the OFS (52.4%) than that in the CFS (13.0%). Furthermore, yield of strawberry in OFS ($51Mg\;ha^{-1}$) was significantly higher compared to CFS ($35Mg\;ha^{-1}$).

Phlox subulata, Cover Plant for Soil Conservation in Chinese Cabbage-Cultivated Highland (고랭지배추 재배지 토양보전을 위한 동반작물 지면패랭이)

  • Kim, Ki-Deog;Ahn, Jae-Hoon;Lee, Jeong-Tae;Hong, Soon-Choon;Hwang, Seon-Woong;Kim, Chung-Guk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.6
    • /
    • pp.465-470
    • /
    • 2007
  • To evaluate the effect of companion plant (Phlox subulata and Glechoma hederacea var. longituba) on conservation of soil in slopped highland, coverage of crops and soil erosion were investigated with 3 different conditions. The coverage rate of Phlox subulata with Chinese cabbage cultivation was kept on approximately 100% from Chinese cabbage-transplanting to -harvest. The coverage rate of Glechoma hederacea var. longituba with Chinese cabbage cultivation was low at it's early stage, however, reached to approximately 100% at the time of Chinese cabbage harvest. In contrast, the coverage rate of Chinese cabbage cultivation without cover crop, and simultaneous transplanting with Chinese cabbage and cover crop were approximately 60%. Losses of soil and nitrate nitrogen were much lower in Phlox subulata with Chinese cabbage cultivation ($0.1{\sim}0.2ton\;ha^{-1}$, $0.2{\sim}0.4kg\;NO_3{^-}-N\;ha^{-1}$) than those in Chinese cabbage cultivation without cover crop ($20.8ton\;ha^{-1}$, $2.1kg\;NO_3{^-}-N\;ha^{-1}$), and simultaneous transplanting with Chinese cabbage and cover crop ($8.9{\sim}10.5ton\;ha^{-1}$, $1.5{\sim}2.2kg\;NO_3{^-}-N\;ha^{-1}$). Cover plants suppressed the weed occurrence up to about 70%. Live mulching with cover plants set a good effects on weed suppression and reduction of soil and nutrient loss. Therefore intercropping with Phlox subulata will make great contributions to soil conservation in Chinese cabbage cultivated highland.

Effect of storage time and the level of formic acid on fermentation characteristics, epiphytic microflora, carbohydrate components and in vitro digestibility of rice straw silage

  • Zhao, Jie;Wang, Siran;Dong, Zhihao;Li, Junfeng;Jia, Yushan;Shao, Tao
    • Animal Bioscience
    • /
    • v.34 no.6
    • /
    • pp.1038-1048
    • /
    • 2021
  • Objective: The study aimed to evaluate the effect of storage time and formic acid (FA) on fermentation characteristics, epiphytic microflora, carbohydrate components and in vitro digestibility of rice straw silage. Methods: Fresh rice straw was ensiled with four levels of FA (0%, 0.2%, 0.4%, and 0.6% of fresh weight) for 3, 6, 9, 15, 30, and 60 d. At each time point, the silos were opened and sampled for chemical and microbial analyses. Meanwhile, the fresh and 60-d ensiled rice straw were further subjected to in vitro analyses. Results: The results showed that 0.2% and 0.6% FA both produced well-preserved silages with low pH value and undetected butyric acid, whereas it was converse for 0.4% FA. The populations of enterobacteria, yeasts, moulds and aerobic bacteria were suppressed by 0.2% and 0.6% FA, resulting in lower dry matter loss, ammonia nitrogen and ethanol content (p<0.05). The increase of FA linearly (p<0.001) decreased neutral detergent fibre and hemicellulose, linearly (p<0.001) increased residual water soluble carbohydrate, glucose, fructose and xylose. The in vitro gas production of rice straw was decreased by ensilage but the initial gas production rate was increased, and further improved by FA application (p<0.05). No obvious difference of FA application on in vitro digestibility of dry matter, neutral detergent fibre, and acid detergent fibre was observed (p>0.05). Conclusion: The 0.2% FA application level promoted lactic acid fermentation while 0.6% FA restricted all microbial fermentation of rice straw silages. Rice straw ensiled with 0.2% FA or 0.6% FA improved its nutrient preservation without affecting digestion, with the 0.6% FA level best.

Semidiurnal Tidal Variation in Water Quality in Asan Bay during four Seasons (계절별로 조사한 조석에 따른 아산만의 수질 변동)

  • Kim, Se Hee;Shin, Yong Sik
    • Journal of Marine Life Science
    • /
    • v.5 no.1
    • /
    • pp.25-33
    • /
    • 2020
  • The Asan Bay, which has semi-diurnal tide with macro-tidal range, is affected by both freshwater discharge from the sluice gates in the sea dikes and tidal seawater inputs from the Yellow sea. Understanding water quality change in response to tides is important since tides can impact the short-term variations in physical and chemical water properties as well as the response of biological properties. The diel variations in water quality were seasonally investigated at 2 hour intervals from a fixed station in the Asan Bay. In the results, water temperature and salinity consistently fluctuated in phase or out of phase with tidal height. Especially salinity was positively correlated with tidal height. The concentrations of total suspended solids were higher in the bottom water than in the surface and fluctuated greatly over the tidal cycle recording higher values at low tide than at high tide. Nitrite+nitrate levels also fluctuated out of phase with tidal height and correlated negatively with tidal height. Other nutrients also showed a similar pattern. The pattern was distinct in July when freshwater was discharged before the field sampling. The concentrations of organic materials, total nitrogen and total phosphorus greatly fluctuated over the tidal cycle and were generally out of phase with tidal height. Most materials except particulate organic forms were correlated with salinity indicating that freshwater inputs were sources for the materials similarly to the dissolved inorganic nutrients. The results suggest that water quality (except dissolved oxygen and pH) and nutrients including organic materials was largely affected by tides in the Asan Bay.

The Characteristics of Growth and Active Compounds of Angelica gigas Nakai Population in Mt. Jeombong (점봉산 참당귀 자생지의 생장 및 유용성분 특성)

  • Park, Yunmi;Jeong, Daehee;Sim, Sujin;Kim, Nahyeon;Park, Hongwoo;Jeon, Gwonseok
    • Korean Journal of Plant Resources
    • /
    • v.32 no.1
    • /
    • pp.9-18
    • /
    • 2019
  • This study was carried out to investigate characteristics of growth and active compounds of Angelica gigas population distributed in Mt. Jeombong. Quadrates were established in native area to harvest root part of Angelica gigas and analyze soil properties in September and October 2017. It was found that Angelica gigas populations were collected above the altitude 758 m near the valley covered with Fraxinus mandshurica and Acer pictum, and so on. In case of soil nutrient, soil organic matter, available phosphorous, and total nitrogen ranged 5.8-25.2%, 23.0-67.9 mg/kg and 0.3-1.3% respectively. Also, the Fresh weight of root ranged 28.8-65.3 g in September and 22.3-75.6 g in October. The content of active compounds ranged 2.7-4.7% in decursin and 2.9-4.5% decursinol angelate in October that was increased by 1% and 2.4% respectively compared with that in September. In the final analysis, there was positive correlation between fresh weight of root and exchangeable cation (natrium, calcium, magnesium). Also, there was positive correlation between active compounds and the content of water in root part of Angelica gigas.

The Effects of Soybean Cultivation on Soil Microorganism Activity (콩 재배가 토양 미생물 군집 활성도에 미치는 영향)

  • Bak, Gyeryeong;Lee, Gyejun;Kim, Taeyoung
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.2
    • /
    • pp.76-82
    • /
    • 2019
  • BACKGROUND: For sustainable agriculture, there are various agricultural practices including low input. Over the last few decades high input of chemical fertilizer and compounds results in environmental pollution and deterioration of soil fertility. Soybean (Glycine max L.) is well known eco-friendly crop due to their symbionts. Soybean has a relationship with nitrogen fixation bacteria called rhizobia. In this research work, we investigated effects of soybean cultivation on soil microorganism activities. METHODS AND RESULTS: Experiments were conducted in pots and potato cultivation was used as reference. Soil chemical properties were analyzed considering soil nutrient over cropping period. For the soil microbial community analysis, dehydrogenase activity analysis (DHA) analyzed along with denaturing gradient gel electrophoresis. The results showed that higher soil organic matter in the soybean cultivation soil than in the potato cultivation soil. Available $P_2O_5$ concentration increased gradually in both pots but showed higher value in the potato cultivation soil. DHA value implying microbial activities showed higher value in the soybean cultivation soil over all cropping period. CONCLUSION: The cause of high microbial activity in the soybean cultivation soil was considered to the effects of some specific microorganisms related to soybean cultivation. Therefore, the availability of soybean cultivation for sustainable agriculture should be encouraged in terms of microorganism community activity in soil.

Development of suitable substrate of Sparassis latifolia for bottle cultivation (꽃송이버섯 병재배 적합 배지 개발)

  • Gwon, Hee-Min;Lee, Yun-Hae;Choi, Jong-In;Jeon, Dae-Hoon;Lee, Yong-seon;Lee, Young-Soon;Kim, Jeong-Han
    • Journal of Mushroom
    • /
    • v.17 no.3
    • /
    • pp.126-131
    • /
    • 2019
  • This study sought to identify the optimum substrate composition for the stable bottle cultivation of Sparassis latifolia. The main substrate was fermented larch sawdust. Six nutrient sources were mixed at a maximum volume ratio of 20%. The fresh weight of fruit body was the highest at 128.5 g for GMSL69033 and 126.6 g for 'Neoul' in the treatments of beet pulp and corn flour in a volume ratio of 15:5. In addition, the total cultivation period was 94 days, which was shorter than that required for other treatments. The selected substrate characteristics were pH 4.7, C:N (carbon to nitrogen) ratio of 106:4, moisture content of 70%, and air filling porosity of 38%. We plan to develop new income items through research on mycelial incubation and fruit body growth conditions.