• Title/Summary/Keyword: nutrient ion

Search Result 132, Processing Time 0.019 seconds

Effect of soil-ameliorator mixtures on nutrient leaching in sandy paddy soil (사질답토양(砂質畓土壤)에 수종(數種) 개량제(改良劑) 시용(施用)이 양분용탈(養分溶脫)에 미치는 영향(影響))

  • Ahn, Sang-Bae;Park, Jun-Kyu;Yeon, Beong-Yeal;Yuk, Chang-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.2
    • /
    • pp.131-138
    • /
    • 1987
  • Experimental informations on the possible alternative resources of soil addition in sandy paddy soils were obtained by applying fertilizer N, P, and K to the top of 26 cm long columns containing the soil-ameliorator mixture and by determining the concentration and leaching loss of nutrients in percolated water and permeability. 1. Addition of red earth and compost to soils decreased pronouncedly the permeability. Relative magnitude of permeability was compost+slag+red earth > compost+red earth > compost > red earth > compost+slag > slag > non-added soil. 2. Concentration and leaching loss of $NH_4-N$ and $SiO_2$ were high by addition of compost-slag or red earth mixture to soils. The present of these nutrients in soils after experiment was, also, higher than that in non-added soil and in red earth to soils. 3. Those of K, Ca, and Mg were similar to $NH_4-N$ and $SiO_2$. Especially, leaching loss and present of K in soils by addition of compost to soils were higher dramatically than those of non-added soil and of red earth to soils. 4. Those of $Fe^{{+}{+}}$ in non-added soil were much higher than those by addition of compost and slag to soils. These values were the highest in 12 days after submergence, while these of $Mn^{{+}{+}}$ the lowest. 5. Concentration of $NH_4-N$ was high by addition of compost to soils, while the present of it in soils after experiment was tended to be contrary.

  • PDF

The Demand Analysis of Water Purification of Groundwater for the Horticultural Water Supply (시설원예 용수 공급을 위한 지하수 정수 요구도 분석)

  • Lee, Taeseok;Son, Jinkwan;Jin, Yujeong;Lee, Donggwan;Jang, Jaekyung;Paek, Yee;Lim, Ryugap
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.510-523
    • /
    • 2020
  • This study analyzed groundwater quality in hydroponic cultivation facilities. Through this study, the possibility of groundwater use was evaluated according to the quality of the groundwater for hydroponic cultivation facilities. Good groundwater quality, on average, is pH 6.61, EC 0.27 dS/m, NO3-N 7.64 mg/L, NH4+-N 0.80 mg/L, PO4-P 0.09 mg/L, K+ 6.26 mg/L, Ca2+ 18.57 mg/L, Mg2+ 4.38 mg/L, Na+ 20.85 mg/L, etc. All of these satisfy the water quality standard for raw water in nutrient cultivation. But in the case of farmers experiencing problems with groundwater quality, most of the items exceeded the water quality standard. As a result of the analysis, it was judged that purifying groundwater of unsuitable quality for crop cultivation, and using it as raw water, was effective in terms of water quality and soil purification. If an agricultural water purification system is constructed based on the results of this study, it is judged that the design will be easy because the items to be treated can be estimated. If a purification system is established, it can use groundwater directly in the facility and for horticulture. These study results will be available for use in sustainable agriculture and environments.