• Title/Summary/Keyword: numerical-simulation

Search Result 9,777, Processing Time 0.038 seconds

유선 시뮬레이션 기법과 준해석해를 이용한 용질 거동 분석

  • 정대인;최종근;박광원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.57-62
    • /
    • 2004
  • Streamline simulation researches have been extensively accomplished due to the swiftness of computation and the reduction of numerical dispersion. In this study, we developed a streamline simulation model using a semianalytical solution of ID transport equation. To validate accuracy of the developed model, we compared simulation results of contaminant transport, which were acquired by streamline simulation models using an analytical solution, a numerical solution, and a semianalytical solution. The developed model using the semianalytical solution matched well with the model using an analytical solution. However, streamline simulation model using a numerical solution showed numerical dispersion. For an advection-dominant flow, there was little difference in the simulation results between the developed model and tile analytical model, but the differences between the analytical model and the numerical model were cleary shown. From the comparison of computing time we know that the streamline simulation using the semianalytical solution is 2-60 times as fast as the streamline simulation using the numerical solution.

  • PDF

Ensuring Sound Numerical Simulation of Hybrid Automata

  • Hur, Yerang;Sim, Jae-Hwan;Kim, Je-Sung;Chai, Jin-Young
    • Journal of Computing Science and Engineering
    • /
    • v.3 no.2
    • /
    • pp.73-87
    • /
    • 2009
  • A hybrid system is a dynamical system in which states can be changed continuously and discretely. Simulation based on numerical methods is the widely used technique for analyzing complicated hybrid systems. Numerical simulation of hybrid systems, however, is subject to two types of numerical errors: truncation error and round-off error. The effect of such errors can make an impossible transition step to become possible during simulation, and thus, to generate a simulation behavior that is not allowed by the model. The possibility of an incorrect simulation behavior reduces con.dence in simulation-based analysis since it is impossible to know whether a particular simulation trace is allowed by the model or not. To address this problem, we define the notion of Instrumented Hybrid Automata (IHA), which considers the effect of accumulated numerical errors on discrete transition steps. We then show how to convert Hybrid Automata (HA) to IRA and prove that every simulation behavior of IHA preserves the discrete transition steps of some behavior in HA; that is, simulation of IHA is sound with respect to HA.

A hybrid numerical simulation method for typhoon wind field over complex terrain

  • Huang, Wenfeng;Zhou, Huanlin
    • Wind and Structures
    • /
    • v.18 no.5
    • /
    • pp.549-566
    • /
    • 2014
  • In spite of progress in the numerical simulation of typhoon wind field in atmospheric boundary layer (ABL), using typhoon wind field model in conjunction with Monte Carlo simulation method can only accurately evaluate typhoon wind field over a general terrain. This method is not enough for a reliable evaluation of typhoon wind field over the actual complex terrain with surface roughness and topography variations. To predict typhoon wind field over the actual complex terrain in ABL, a hybrid numerical simulation method combined typhoon simulation used the typhoon wind field model proposed by Meng et al. (1995) and CFD simulation in which the Reynolds averaged Navier-Stokes (RANS) equations and k-${\varepsilon}$ turbulence model are used. Typhoon wind filed during typhoon Dujuan and Imbudo are simulated using the hybrid numerical simulation method, and compared with the results predicted by the typhoon wind field model and the wind field measurement data collected by Fugro Geotechnical Services (FGS) in Hong Kong at the bridge site from the field monitoring system of wind turbulence parameters (FMS-WTP) to validate the feasibility and accuracy of the hybrid numerical simulation method. The comparison demonstrates that the hybrid numerical simulation method gives more accurate prediction to typhoon wind speed and direction, because the effect of topography is taken into account in the hybrid numerical simulation method.

Cavitation Noise Prediction: Direct numerical simulation and Modeling (직접 수치 모사를 통한 캐비테이션 소음 예측 및 모델링)

  • Seo, Jung-Hee;Moon, Young-J.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2929-2934
    • /
    • 2007
  • Prediction methods for cavitation noise are presented. At first, direct numerical simulation of cavitating flow noise has been performed, and acoustic analogy equation based on the cavitation noise modeling is derived. For the direct numerical simulation, a density based homogenous equilibrium model is employed to simulate cavitating two-phase flow and the governing equations are solved with high-order numerical schemes to resolve cavitation noise. The compressible Navier-Stokes equations for mixture fluids are discretized with a sixth-order central compact scheme, and the steep gradient of flow variables and supersonic regions are treated with the selective spatial filtering technique. The direct simulation of cavitating flow noise is performed for a 2D circular cylinder at cavitation number 0.7 and 1. The far-field noise is also predicted with the derived analogy equation. Noise spectrum predicted with the equation is well compared with the result of direct numerical simulation and also agree well with the theory.

  • PDF

Impedance-based damage monitoring of steel column connection: numerical simulation

  • Ho, Duc-Duy;Ngo, Thanh-Mong;Kim, Jeong-Tae
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.3
    • /
    • pp.339-356
    • /
    • 2014
  • This study has been motivated to evaluate the practicality of numerical simulation of impedance monitoring for damage detection in steel column connection. In order to achieve the objective, the following approaches are implemented. Firstly, the theory of electro-mechanical (E/M) impedance responses and impedance-based damage monitoring method are outlined. Secondly, the feasibility of numerical simulation of impedance monitoring is verified for several pre-published experimental examples on steel beams, cracked aluminum beams, and aluminum round plates. Undamaged and damaged steel and aluminum beams are simulated to compare to experimental impedance responses. An aluminum round plate with PZT patch in center is simulated to investigate sensitive range of impedance responses. Finally, numerical simulation of the impedance-based damage monitoring is performed for a steel column connection in which connection bolts are damaged. From the numerical simulation test, the applicability of the impedance-based monitoring to the target steel column connection can be evaluated.

Numerical Simulation of Tribological Phenomena Using Stochastic Models

  • Shimizu, T.;Uchidate, M;Iwabuchi, A.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.235-236
    • /
    • 2002
  • Tribological phenomena such as wear or transfer are influenced by various factors and have complicated behavior. Therefore, it is difficult to predict the behavior of the gribological phenomena because of their complexity. But, those tribological phenomena can be considered simply as to transfer micro material particles from the sliding interface. Then, we proposed the numerical simulation method for tribological phenomena such as wear of transfer using stochastic process models. This numerical simulation shows the change of the 3-D surface topography. In this numerical simulation, initial 3-D surface toughness data are generated by the method of non-causal 2-D AR (autoregressive) model. Processes of wear and transfer for some generated initial 3-D surface data are simulated. Simulation results show successfully the change of the 3-D surface topography.

  • PDF

Direct Numerical Simulation of 3-Dimensional Axial Turbulent Boundary Layers with Spanwise Curvature

  • Shin, Dong-Shin
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.441-447
    • /
    • 2000
  • Direct numerical simulation has been used to study turbulent boundary layers with convex curvature. A direct numerical simulation program has been developed to solve incompressible Navier-Stokes equations in generalized coordinates with the finite volume method. We considered two boundary layer thicknesses. When the curvature effect is small, mean velocity statistics show little difference with those of a plane channel flow. Turbulent intensity decreases as curvature increases. Contours suggest that streamwise vorticities are strong where large pressure fluctuations exist.

  • PDF

Numerical simulation of unsteady galloping of two-dimensional iced transmission line with comparison to conventional quasi-steady analysis

  • Yang, Xiongjun;Lei, Ying;Zhang, Jianguo
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.487-496
    • /
    • 2020
  • Most of the previous works on numerical analysis of galloping of transmission lines are generally based on the quasisteady theory. However, some wind tunnel tests of the rectangular section or hangers of suspension bridges have shown that the galloping phenomenon has a strong unsteady characteristic and the test results are quite different from the quasi-steady calculation results. Therefore, it is necessary to check the applicability of the quasi-static theory in galloping analysis of the ice-covered transmission line. Although some limited unsteady simulation researches have been conducted on the variation of parameters such as aerodynamic damping, aerodynamic coefficients with wind speed or wind attack angle, there is a need to investigate the numerical simulation of unsteady galloping of two-dimensional iced transmission line with comparison to wind tunnel test results. In this paper, it is proposed to conduct a two dimensional (2-D) unsteady numerical analysis of ice-covered transmission line galloping. First, wind tunnel tests of a typical crescent-shapes iced conductor are conducted firstly to check the subsequent quasisteady and unsteady numerical analysis results. Then, a numerical simulation model consistent with the aeroelastic model in the wind tunnel test is established. The weak coupling methodology is used to consider the fluid-structure interaction in investigating a two-dimension numerical simulation of unsteady galloping of the iced conductor. First, the flow field is simulated to obtain the pressure and velocity distribution of the flow field. The fluid action on the iced conduct at the coupling interface is treated as an external load to the conductor. Then, the movement of the conduct is analyzed separately. The software ANSYS FLUENT is employed and redeveloped to numerically analyze the model responses based on fluid-structure interaction theory. The numerical simulation results of unsteady galloping of the iced conduct are compared with the measured responses of wind tunnel tests and the numerical results by the conventional quasi-steady theory, respectively.

Wind field simulation over complex terrain under different inflow wind directions

  • Huang, Wenfeng;Zhang, Xibin
    • Wind and Structures
    • /
    • v.28 no.4
    • /
    • pp.239-253
    • /
    • 2019
  • Accurate numericalsimulation of wind field over complex terrain is an important prerequisite for wind resource assessment. In this study, numerical simulation of wind field over complex terrain was further carried out by taking the complex terrain around Siu Ho Wan station in Hong Kong as an example. By artificially expanding the original digital model data, Gambit and ICEM CFD software were used to create high-precision complex terrain model with high-quality meshing. The equilibrium atmospheric boundary layer simulation based on RANS turbulence model was carried out in a flat terrain domain, and the approximate inflow boundary conditions for the wind field simulation over complex terrain were established. Based on this, numerical simulations of wind field over complex terrain under different inflow wind directions were carried out. The numerical results were compared with the wind tunnel test and field measurement data for land and sea fetches. The results show that the numerical results are in good agreement with the wind tunnel data and the field measurement data which can verify the accuracy and reliability of the numerical simulation. The near ground wind field over complex terrain is complex and affected obviously by the terrain, and the wind field characteristics should be fully understood by numerical simulation when carrying out engineering application on it.

Numerical Simulation of Die Compaction: Case Studies and Guidelines

  • Coube, Olivier
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.185-186
    • /
    • 2006
  • Numerical Simulation of powder die pressing is conducted on Case Study geometry. Influence of fill density distribution and punch kinematics upon green density distribution and punch loading are studied and discussed. Deviations in punch kinematics due to punch deflection influence the most the results in term of density and force.

  • PDF