• Title/Summary/Keyword: numerical validation

Search Result 854, Processing Time 0.031 seconds

Validation of Numerical Codes Applied to Floating Offshore Structures

  • Choi, Hang S.
    • Journal of Hydrospace Technology
    • /
    • v.2 no.1
    • /
    • pp.55-64
    • /
    • 1996
  • Herein a review is made on the validation problem of numerical codes applied to floating offshore structures. Since the dynamic behaviour of offshore floating structures in water waves is in general complex and nonlinear, a numerical approach seems to be promising. However, numerical codes are likely involved with uncertainties and they at the present status show apparent scatterness in typical bechmark tests, particularly in second-order wave forces. Convergence test is the minimum requirement for the validation of numerical codes. Some other practical check points are introduced to clarify the potential error sources. It is concluded that a standard procedure for validation must be urgently established sothat numerical methods can safely be used as a rational design tool.

  • PDF

Geomechanical and hydrogeological validation of hydro-mechanical two-way sequential coupling in TOUGH2-FLAC3D linking algorithm with insights into the Mandel, Noordbergum, and Rhade effects

  • Lee, Sungho;Park, Jai-Yong;Kihm, Jung-Hwi;Kim, Jun-Mo
    • Geomechanics and Engineering
    • /
    • v.28 no.5
    • /
    • pp.437-454
    • /
    • 2022
  • The hydro-mechanical (HM) two-way sequential coupling in the TOUGH2-FLAC3D linking algorithm is validated completely and successfully in both M to H and H to M directions, which are initiated by mechanical surface loading for geomechanical validation and hydrological groundwater pumping for hydrogeological validation, respectively. For such complete and successful validation, a TOUGH2-FLAC3D linked numerical model is developed first by adopting the TOUGH2-FLAC3D linking algorithm, which uses the two-way (fixed-stress split) sequential coupling scheme and the implicit backward time stepping method. Two geomechanical and two hydrogeological validation problems are then simulated using the linked numerical model together with basic validation strategies and prerequisites. The second geomechanical and second hydrogeological validation problems are also associated with the Mandel effect and the Noordbergum and Rhade effects, respectively, which are three phenomenally well-known but numerically challenging HM effects. Finally, sequentially coupled numerical solutions are compared with either analytical solutions (verification) or fully coupled numerical solutions (benchmarking). In all the four validation problems, they show almost perfect to extremely or very good agreement. In addition, the second geomechanical validation problem clearly displays the Mandel effect and suggests a proper or minimum geometrical ratio of the height to the width for the rectangular domain to maximize agreement between the numerical and analytical solutions. In the meantime, the second hydrogeological validation problem clearly displays the Noordbergum and Rhade effects and implies that the HM two-way sequential coupling scheme used in the linked numerical model is as rigorous as the HM two-way full coupling scheme used in a fully coupled numerical model.

On the use of numerical models for validation of high frequency based damage detection methodologies

  • Aguirre, Diego A.;Montejo, Luis A.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.4
    • /
    • pp.383-397
    • /
    • 2015
  • This article identifies and addresses current limitations on the use of numerical models for validation and/or calibration of damage detection methodologies that are based on the analysis of the high frequency response of the structure to identify the occurrence of abrupt anomalies. Distributed-plasticity non-linear fiber-based models in combination with experimental data from a full-scale reinforced concrete column test are used to point out current modeling techniques limitations. It was found that the numerical model was capable of reproducing the global and local response of the structure at a wide range of inelastic demands, including the occurrences of rebar ruptures. However, when abrupt sudden damage occurs, like rebar fracture, a high frequency pulse is detected in the accelerations recorded in the structure that the numerical model is incapable of reproducing. Since the occurrence of such pulse is fundamental on the detection of damage, it is proposed to add this effect to the simulated response before it is used for validation purposes.

High-velocity impact of large caliber tungsten projectiles on ordinary Portland and calcium aluminate cement based HPSFRC and SIFCON slabs -Part II: numerical simulation and validation

  • Gulkan, P.;Korucu, H.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.617-636
    • /
    • 2011
  • We present the numerical implementation, simulation, and validation of the high-velocity impact experiments that have been described in the companion article. In this part, numerical investigations and simulations performed to mimic the tests are presented. The experiments were analyzed by the explicit integration-based software ABAQUS for improved simulations. Targets were modeled with a damaged plasticity model for concrete. Computational results of residual velocity and crater dimensions yielded acceptable results.

Smoothing Parameter Selection Using Multifold Cross-Validation in Smoothing Spline Regressions

  • Hong, Changkon;Kim, Choongrak;Yoon, Misuk
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.2
    • /
    • pp.277-285
    • /
    • 1998
  • The smoothing parameter $\lambda$ in smoothing spline regression is usually selected by minimizing cross-validation (CV) or generalized cross-validation (GCV). But, simple CV or GCV is poor candidate for estimating prediction error. We defined MGCV (Multifold Generalized Cross-validation) as a criterion for selecting smoothing parameter in smoothing spline regression. This is a version of cross-validation using $leave-\kappa-out$ method. Some numerical results comparing MGCV and GCV are done.

  • PDF

Reassessment on numerical results by the continuum model (연속체모델에 의한 수치해석결과에 대한 재평가)

  • Jeong, Jae-Dong;Yu, Ho-Seon;No, Seung-Tak;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.3926-3937
    • /
    • 1996
  • In recent years there has been increased interest in the continuum model associated with the solidification of binary mixtures. A review of the literature, however, shows that the model verification was not sufficient or only qualitative. Present work is conducted for the reassessment of continuum model on the solidification problems of binary mixtures widely used for model validation. In spite of using the same continuum model, the results do not agree well with those of Incropera and co-workers which are benchmark problems typically used for validation of binary mixture solidification. Inferring from the agreement of present results with the analytic, experimental and other model's numerical results, this discrepancy seems to be caused by numerical errors in applying continuum model developed by Incropera and co-workers, not by the model itself. Careful examination should be preceded before selecting validation problems.

Validation of a CFD model for hydraulic seals

  • Roy, Vincent Le;Guibault, Francois;Vu, Thi C.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.400-408
    • /
    • 2009
  • Optimization of seal geometries can reduce significantly the energetic losses in a hydraulic seal [1], especially for high head runner turbine. In the optimization process, a reliable prediction of the losses is needed and CFD is often used. This paper presents numerical experiments to determine an adequate CFD model for straight, labyrinth and stepped hydraulic seals used in Francis runners. The computation is performed with a finite volume commercial CFD code with a RANS low Reynolds turbulence model. As numerical computations in small radial clearances of hydraulic seals are not often encountered in the literature, the numerical results are validated with experimental data on straight seals and labyrinth seals. As the validation is satisfactory enough, geometrical optimization of hydraulic seals using CFD will be studied in future works.

On validation of fully coupled behavior of porous media using centrifuge test results

  • Tasiopoulou, Panagiota;Taiebat, Mahdi;Tafazzoli, Nima;Jeremic, Boris
    • Coupled systems mechanics
    • /
    • v.4 no.1
    • /
    • pp.37-65
    • /
    • 2015
  • Modeling and simulation of mechanical response of infrastructure object, solids and structures, relies on the use of computational models to foretell the state of a physical system under conditions for which such computational model has not been validated. Verification and Validation (V&V) procedures are the primary means of assessing accuracy, building confidence and credibility in modeling and computational simulations of behavior of those infrastructure objects. Validation is the process of determining a degree to which a model is an accurate representation of the real world from the perspective of the intended uses of the model. It is mainly a physics issue and provides evidence that the correct model is solved (Oberkampf et al. 2002). Our primary interest is in modeling and simulating behavior of porous particulate media that is fully saturated with pore fluid, including cyclic mobility and liquefaction. Fully saturated soils undergoing dynamic shaking fall in this category. Verification modeling and simulation of fully saturated porous soils is addressed in more detail by (Tasiopoulou et al. 2014), and in this paper we address validation. A set of centrifuge experiments is used for this purpose. Discussion is provided assessing the effects of scaling laws on centrifuge experiments and their influence on the validation. Available validation test are reviewed in view of first and second order phenomena and their importance to validation. For example, dynamics behavior of the system, following the dynamic time, and dissipation of the pore fluid pressures, following diffusion time, are not happening in the same time scale and those discrepancies are discussed. Laboratory tests, performed on soil that is used in centrifuge experiments, were used to calibrate material models that are then used in a validation process. Number of physical and numerical examples are used for validation and to illustrate presented discussion. In particular, it is shown that for the most part, numerical prediction of behavior, using laboratory test data to calibrate soil material model, prior to centrifuge experiments, can be validated using scaled tests. There are, of course, discrepancies, sources of which are analyzed and discussed.

Numerical wave interaction with tetrapods breakwater

  • Dentale, Fabio;Donnarumma, Giovanna;Carratelli, Eugenio Pugliese
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.800-812
    • /
    • 2014
  • The paper provides some results of a new procedure to analyze the hydrodynamic aspects of the interactions between maritime emerged breakwaters and waves by integrating CAD and CFD. The structure is modeled in the numerical domain by overlapping individual three-dimensional elements (Tetrapods), very much like the real world or physical laboratory testing. Flow of the fluid within the interstices among concrete blocks is evaluated by integrating the RANS equations. The aim is to investigate the reliability of this approach as a design tool. Therefore, for the results' validation, the numerical run-up and reflection effects on virtual breakwater were compared with some empirical formulae and some similar laboratory tests. Here are presented the results of a first simple validation procedure. The validation shows that, at present, this innovative approach can be used in the breakwater design phase for comparison between several design solutions with a significant minor cost.

Fluid-structure interaction analysis of sloshing in an annular - sectored water pool subject to surge motion

  • Eswaran, M.;Goyal, P.;Reddy, G.R.;Singh, R.K.;Vaze, K.K.
    • Ocean Systems Engineering
    • /
    • v.3 no.3
    • /
    • pp.181-201
    • /
    • 2013
  • The main objective of this work is to investigate the sloshing behavior in a baffled and unbaffled three dimensional annular-sectored water pool (i.e., tank) which is located at dome region of the primary containment. Initially two case studies were performed for validation. In these case studies, the theoretical and experimental results were compared with numerical results and good agreement was found. After the validation of present numerical procedure, an annular-sectored water pool has been taken for numerical investigation. One sector is taken for analysis from the eight sectored water pool. The free surface is captured by Volume of Fluid (VOF) technique and the fluid portion is solved by finite volume method while the structure portions are solved by finite element approach. Baffled and un-baffled cases were compared to show the reduction in wave height under excitation. The complex mechanical interaction between the fluid and pool wall deformation is simulated using a partitioned strong fluid-structure coupling.