• 제목/요약/키워드: numerical simulation methods

검색결과 903건 처리시간 0.025초

ANN based on forgetting factor for online model updating in substructure pseudo-dynamic hybrid simulation

  • Wang, Yan Hua;Lv, Jing;Wu, Jing;Wang, Cheng
    • Smart Structures and Systems
    • /
    • 제26권1호
    • /
    • pp.63-75
    • /
    • 2020
  • Substructure pseudo-dynamic hybrid simulation (SPDHS) combining the advantages of physical experiments and numerical simulation has become an important testing method for evaluating the dynamic responses of structures. Various parameter identification methods have been proposed for online model updating. However, if there is large model gap between the assumed numerical models and the real models, the parameter identification methods will cause large prediction errors. This study presents an ANN (artificial neural network) method based on forgetting factor. During the SPDHS of model updating, a dynamic sample window is formed in each loading step with forgetting factor to keep balance between the new samples and historical ones. The effectiveness and anti-noise ability of this method are evaluated by numerical analysis of a six-story frame structure with BRBs (Buckling Restrained Brace). One BRB is simulated in OpenFresco as the experimental substructure, while the rest is modeled in MATLAB. The results show that ANN is able to present more hysteresis behaviors that do not exist in the initial assumed numerical models. It is demonstrated that the proposed method has good adaptability and prediction accuracy of restoring force even under different loading histories.

Numerical Simulation of the Flow Field inside a New 1 Ton/Day Entrained-Flow Gasifier in KIER

  • Li, Xiang-Yang;Choi, Young-Chan;Park, Tae-Jun
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2000년도 춘계 학술발표회 논문집
    • /
    • pp.43-50
    • /
    • 2000
  • The flow field of a 1 Ton/Day entrained-flow gasifier constructed in KIER was numerical simulate in this paper. The standard $k-{\varepsilon}$ turbulence model and simple procedure was used with the Primitive-Variable methods during computation. In order to find the influence factors of the flow field which may have great effects on coal gasification process inside gasifier, difference geometry parameters at various operating conditions were studied by simulation methods. The calculation results show that the basic shape of the flow field is still parabolic even the oxygen gas is injected from the off-axis position. There exist an obvious external recirculation zone with a length less than 1.0m and a small internal recirculation region nears the inlet part. The flow field inside the new gasifier is nearly similar as that of the old 0.5T/D gasifier at same position if the design of burner remains unchanged.

  • PDF

직접 수치 모사법을 이용한 섬유 강화 복합재료의 열팽창계수 예측 (Prediction of Thermal Expansion Coefficients for Fiber-Reinforced Composites by Direct Numerical Simulation)

  • 남윤식;오민환;김광식;조진연
    • 한국항공우주학회지
    • /
    • 제35권9호
    • /
    • pp.771-777
    • /
    • 2007
  • 본 논문에서는 직접 수치 모사 기법을 이용해 섬유 강화 복합재료의 열팽창계수를 예측하였다. 직접 수치 모사 기법을 통해 구한 열팽창계수 예측치와 실험치의 비교를 통해 본 논문에서 제안한 직접 수치 모사 기법을 이용하면 인위적인 가정을 최소화하면서 기존의 방법과 유사하게 복합재료 열팽창계수를 예측할 수 있음을 확인하였다. 또한 섬유 체적비 변화에 따른 열팽창계수의 변화를 예측하고 그 경향성을 고찰하였다.

Peridynamic simulation of brittle-ice crushed by a vertical structure

  • Liu, Minghao;Wang, Qing;Lu, Wei
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권2호
    • /
    • pp.209-218
    • /
    • 2017
  • Sea ice is the main factor affecting the safety of the Arctic engineering. However, traditional numerical methods derived from classical continuum mechanics have difficulties in resolving discontinuous problems like ice damage. In this paper, a non-local, meshfree numerical method called "peridynamics", which is based on integral form, was applied to simulate the interaction between level ice and a cylindrical, vertical, rigid structure at different velocities. Ice in the simulation was freshwater ice and simplified as elastic-brittle material with a linear elastic constitutive model and critical equivalent strain criterion for material failure in state-based peridynamics. The ice forces obtained from peridynamic simulation are in the same order as experimental data. Numerical visualization shows advantages of applying peridynamics on ice damage. To study the repetitive nature of ice force, damage zone lengths of crushing failure were computed and conclude that damage zone lengths are 0.15-0.2 times as ice thickness.

Prediction of initiation time of corrosion in RC using meshless methods

  • Yao, Ling;Zhang, Lingling;Zhang, Ling;Li, Xiaolu
    • Computers and Concrete
    • /
    • 제16권5호
    • /
    • pp.669-682
    • /
    • 2015
  • Degradation of reinforced concrete (RC) structures due to chloride penetration followed by reinforcement corrosion has been a serious problem in civil engineering for many years. The numerical simulation methods at present are mainly finite element method (FEM) and finite difference method (FDM), which are based on mesh. Mesh generation in engineering takes a long time. In the present article, the numerical solution of chloride transport in concrete is analyzed using radial point interpolation method (RPIM) and element-free Galerkin (EFG). They are all meshless methods. RPIM utilizes radial polynomial basis, whereas EFG uses the moving least-square approximation. A Galerkin weak form on global is used to attain the discrete equation, and four different numerical examples are presented. MQ function and appropriate parameters have been proposed in RPIM. Numerical simulation results are compared with those obtained from the finite element method (FEM) and analytical solutions. Two case of chloride transport in full saturated and unsaturated concrete are analyzed to test the practical applicability and performance of the RPIM and EFG. A good agreement is obtained among RPIM, EFG, and the experimental data. It indicates that RPIM and EFG are reliable meshless methods for prediction of chloride concentration in concrete structures.

철근 모사 방법에 따른 콘크리트 관통성능 변화에 관한 수치적 연구 (Numerical Study on Variation of Penetration Performance into Concrete with Reinforcement Modeling Methods)

  • 백승주
    • 한국시뮬레이션학회논문지
    • /
    • 제25권3호
    • /
    • pp.97-105
    • /
    • 2016
  • 본 논문에서는 철근 모사 방법에 따른 관통자의 콘크리트 관통성능 변화를 수치적으로 분석하였다. 관통해석은 상용 전산해석 프로그램인 AUTODYN-3D을 사용하여 수행하였고, Hanchak의 시험 데이터를 사용하여 해석 방법의 신뢰성을 입증하였으며, 철근의 강도와 지름 및 관통자의 충돌위치, 속도를 변수로 사용하여 충돌 해석을 수행하였다. 철근 모사가 관통성능에 미치는 영향을 정량적으로 분석하기 위해, 관통자의 잔류 속도를 계산하여 침투/관통성능을 평가하였다.

건축물의 풍하중을 예측하기 위한 수치풍동기법 (A GUIDE FOR NUMERICAL WIND TUNNEL ANALYSIS IN ORDER TO PREDICT WIND LOAD ON A BUILDING)

  • 이명성;이정희;허남건;최창근
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.5-9
    • /
    • 2010
  • A numerical wind tunnel simulation is performed in order to predict wind loads acting on a building. The aim of the present study is to suggest a guideline for the numerical wind tunnel analysis, which could provide more detail wind load distributions compared to the wind code and expensive wind tunnel experiments. To validate the present numerical simulation, wind-induced loads on a 6 m cube model is predicted. Atmospheric boundary layer is used as a inlet boundary condition. Various effect of numerical methods are investigated such as size of computational domain, grid density, turbulence model and discretization scheme. The appropriate procedure for the numerical wind tunnel analysis is suggested through the present study.

  • PDF

Numerical Methods in Propulsion System Design

  • Buchars'kyy, Valeriy
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2012년도 제38회 춘계학술대회논문집
    • /
    • pp.238-238
    • /
    • 2012
  • Report is devoted to place and role of numerical simulation in design of rocket propulsion systems. In introduction advanced solutions in liquid propellant rocket engines design are presented. Further essence of design process described briefly. The central place of method of solution of direct problem in design process was shown. Numerical simulation for solving direct problem of fluid dynamic was used as the alternative to theoretical and experimental approaches. Main features of numerical models of processes in propulsion systems were observed. Some results of simulation and (or) design of different types of chemical propulsion system were presented also. The combined rocket engine, rocket engine with injection of after-turbine gas into supersonic part of the nozzle, solid propellant engine and hybrid propulsion engine are under consideration.

  • PDF

디지털 수치수조 기법에 의한 연안 Tsunami의 수치 시뮬레이션 (Numerical Simulation of a Near shore Tsunami Using a Digital Wave Tank Simulation Technique)

  • 박종천;전호환
    • 한국해양공학회지
    • /
    • 제17권6호
    • /
    • pp.7-15
    • /
    • 2003
  • A Digital Wave Tank simulation technique, based on a finite-difference method and a modified marker-and-cell (MAC) algorithm, is applied in order to investigate the characteristics of nonlinear Tsunami propagations and their interactions with a 2D sloping beach, Ohkushiri Island, and to predict maximum wove run-up around the island. The Navier-Stokes (NS) and continuity equation are governed in the computational domain, and the boundary values are updated at each time step, by a finite-difference time-marching scheme in the frame of the rectangular coordinate system. The fully nonlinear, kinematic, free-surface condition is satisfied by the modified marker-density function technique. The near shore Tsunami is assumed to be a solitary wave, and is generated from the numerical wave-maker in the developed Digital Wave Tank. The simulation results are compared with the experiments and other numerical methods, based on the shallow-water wave theory.

디지털 수치수조 기법에 의한 연안 Tsunami의 수치 시뮬레이션 (Numerical Simulation of Nearshore Tsunami Using a Digital Wave Tank Simulation Technique)

  • 박종천;전호환
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.231-239
    • /
    • 2003
  • A Digital Wave Tank simulation technique based on a finite-difference method and a modified marker-and-cell (MAC) algorithm is applied to investigate the characteristics of nonlinear Tsunami propagations and their interactions with a 2D sloping beach and Ohkushiri island, and to predict maximum wave run-up around the island. The Navier-Stokes (NS) and continuity equation are governed in the computational domain and the boundary values updated at each time step by a finite-difference time-marching scheme in the frame of rectangular coordinate system. The fully nonlinear kinematic free-surface condition is satisfied by the modified marker-density function technique. The Nearshore Tsunami is assumed to be a solitary wave and generated from the numerical wavemaker in the developed Digital Wave Tank. The simulation results are compared with the experiments and other numerical methods based on the shallow-water wave theory.

  • PDF