• Title/Summary/Keyword: numerical radius

Search Result 616, Processing Time 0.026 seconds

A Simple Mlodel for Dispersion in the Stable Boundary Layer

  • Sung-Dae Kang;Fuj
    • Journal of Environmental Science International
    • /
    • v.1 no.1
    • /
    • pp.35-43
    • /
    • 1992
  • Handling the emergency problems such as Chemobyl accident require real time prediction of pollutants dispersion. One-point real time sounding at pollutant source and simple model including turbulent-radiation process are very important to predict dispersion at real time. The stability categories obtained by one-dimensional numerical model (including PBL dynamics and radiative process) are good agreement with observational data (Golder, 1972). Therefore, the meteorological parameters (thermal, moisture and momentum fluxes; sensible and latent heat; Monin-Obukhov length and bulk Richardson number; vertical diffusion coefficient and TKE; mixing height) calculated by this model will be useful to understand the structure of stable boundary layer and to handling the emergency problems such as dangerous gasses accident. Especially, this simple model has strong merit for practical dispersion models which require turbulence process but does not takes long time to real predictions. According to the results of this model, the urban area has stronger vertical dispersion and weaker horizontal dispersion than rural area during daytime in summer season. The maximum stability class of urban area and rural area are "A" and "B" at 14 LST, respectively. After 20 LST, both urban and rural area have weak vertical dispersion, but they have strong horizontal dispersion. Generally, the urban area have larger radius of horizontal dispersion than rural area. Considering the resolution and time consuming problems of three dimensional grid model, one-dimensional model with one-point real sounding have strong merit for practical dispersion model.al dispersion model.

  • PDF

Analysis of Space Charge Propagation in a Dielectric liquid Employing Field-Thermal Electron Emission Model and Finite Element Method (유한요소법과 전계-열전자 방출 모델에 의한 절연유체 내 공간전하 전파해석)

  • Lee, Ho-Young;Lee, Se-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.2011-2015
    • /
    • 2009
  • In an insulating dielectric liquid such as transformer oil, space charge injection and propagation were analyzed under the Fowler-Nordheim and Richardson-Dushman's thermal emission charge injection conditions for blade-plane electrodes stressed by a step voltage. The governing equations were composed of all five equations such as the Poisson's equation for electric fields, three continuity equations for electrons, negative, and positive ions, and energy balanced equation for temperature distributions. The governing equations for each carrier, the continuity equations, belong to the hyperbolic-type PDE of which the solution has a step change at the space charge front resulting in numerical instabilities. To decrease these instabilities, the governing equations were solved simultaneously by the Finite Element Method (FEM) employing the artificial diffusion scheme as a stabilization technique. Additionally, the terminal current was calculated by using the generalized energy method which is based on the Poynting's theorem, and represents more reliable and stable approach for evaluating discharge current. To verify the proposed method, the discharge phenomena were successfully applied to the blade~plane electrodes, where the radius of blade cap was $50{\mu}m$.

Laminar Burning Velocities and Flame Stability Analysis of Hydrocarbon/Hydrogen/Carbon Monoxide-air Premixed Flames (탄화수소/수소/일산화탄소-공기의 예혼합화염에서 층류화염전파속도와 화염안정성)

  • Vu, Tran Manh;Song, Won-Sik;Park, Jeong;Lee, Kee-Man
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.2
    • /
    • pp.23-32
    • /
    • 2011
  • To investigate cell formation in hydrocarbon/hydrogen/carbon monoxide-air premixed flames, the outward propagation and cellular instabilities were experimentally studied in a constant pressure combustion chamber at room temperature and elevated pressures. Unstretched laminar burning velocities and Markstein lengths of the mixtures were obtained by analyzing high-speed schlieren images. In this study, hydrodynamic and diffusional- thermal instabilities were evaluated to examine their effects on flame instabilities. The experimentally-measured unstretched laminar burning velocities were compared to numerical predictions using the PREMIX code. Effective Lewis numbers of premixed flames with methane addition decreased for all of the cases; meanwhile, effective Lewis numbers with propane addition increased for lean and stoichiometric conditions and increased for rich and stoichiometric cases for hydrogen-enriched flames. With the addition of propane, the propensity for cell formation significantly was diminished, whereas cellular instabilities for hydrogen-enriched flames were promoted. However, similar behavior of cellularity was obtained with the addition of methane to the reactant mixtures.

A Numerical Study About the Aerodynamic Characteristics of Elliptic Airfoils (타원형 익형의 공력특성에 관한 수치적 연구)

  • Choe, Seong-Yun;Gwon, O-Jun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.1-10
    • /
    • 2006
  • In the present study, the aerodynamic characteristics of elliptic airfoils are investigated numerically based on the RANS equations and the S-A turbulent model on unstructured meshes. Unlike the NACA series airfoil sections, elliptic airfoils have a relatively small leading edge radius and a rounded trailing edge. Also the maximum thickness is located in the middle of the chord. This geometric characteristics are responsible for the difference in the aerodynamic characteristics from those of NACA family airfoils. To identify the aerodynamic characteristics of elliptic airfoils, the results were compared with those of NACA series airfoils with a same maximum thickness. The effect of airfoil thickness variation on the aerodynamic characteristics were also investigated.

A Study on the Behavior of Spheroid Configuration Bobbin (회전타원체 보빈 형상의 거동에 관한 연구)

  • Kang, Seung-Hee;Ahn, Sung-Ho;Rim, One-Kwon;Kim, Hye-Ung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.717-724
    • /
    • 2010
  • The initial trajectory of a spheroid configuration bobbin for precision guidance has been investigated by analyzing its aerodynamic load and six-degree-of-freedom motion. The effects of changes in the spheroidal head configuration, flow angle and lateral center-of-gravity offset are numerically studied using the commercial software "FLUENT". A wind tunnel test is also conducted to validate the numerical scheme and to examine effect of the Reynolds number on the flow around the bobbin. It is shown that the size of the separation bubble formed on the surface decreases significantly when the Reynolds number is varied between 110,000 and 140,000. At a zero flow angle, an oblate spheroidal head shows relatively moderate rotation while a prolate spheroidal head shows rapid rotation. The bobbin with a spherical head shape has little effect on the flow direction; however, the oblate bobbin is sensitive to the flow angle. The roll motion of the bobbin is greatly influenced by the lateral center-of-gravity offset and maximum dispersion is observed at half of the radius.

Numerical Analysis on the Mechanical Press Joining for the Sheet Metal with a Circular Hole (중공 박판의 기계적 프레스 결합에 관한 해석)

  • Lee, Se-Jung;Kim, Min-Woong;Lee, Jae-Won;Lee, Sang-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1453-1458
    • /
    • 2009
  • This study is to apply the mechanical press joining method to join two kinds of sheet metals with circular holes by mechanical pressing instead of laser beam. Usage of the mechanical pressing avoids the thermal deformation of sheet metals which occurs inevitably in laser joining. A die design has been proposed to make the mechanical press joining applicable with finite element analysis. Five design factors related to the joining force have been selected and applied to the Taguchi method for optimization. Among five factors, 'Forming Depth' and 'Punch Corner Radius' have been revealed to be the most influential ones.

Optimization of pipeline Operation for Stable Landfill Gas Collection Using Numerical Analysis (안정적 매립가스 포집을 위한 배관망 최적운용 분석)

  • 김인기;김세준;허대기;김현태;성원모;배위섭
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.43-52
    • /
    • 2001
  • It is important that the gas collected from wells completed in waste landfill should be continuously and stably transported to pre-treatment stage through pipelines. The transport is generally affected by fluid flow characteristics of landfill, gas reserves, leachate moisture holdup in pipeline, structures and dimensions of pipeline network, etc. This paper analyzes the pipeline transport and collection mechanism for gas generated in a durable waste landfill. From the results, the optimal controlled scheme of blower inlet pressure is proposed for the prevention of trapped gas pocket zones.

  • PDF

Prediction of Turn-down and Roll-in in Hemming Processes through the Comparison between FEA and Experiment (유한요소해석과 실험의 비교를 통한 헤밍 공정에서의 턴다운 및 롤인 결함 예측)

  • Jung H. C.;Lim J. K.;Kim H. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.101-105
    • /
    • 2005
  • Hemming process, composed of flanging, pre-hemming and main hemming, is the last one of a series of forming processes conducted on the automotive panels, having a great influence on the outward appearance of them. The hem quality can be quantitatively defined by the hemming defects including turn-down, warp and roll-in. However, it is difficult to evaluate and predict the hem quality through the experimental measurement or the numerical calculation since the size of defects is very small. This study is focused on how to simulate in the finite element analysis (FEA) the same conditions as in the experiment. The FEA result on turn-down, that was obtained from a finite element model including the spring element linked to the flanging pad, had a good correlation with the experimental data. It was found that the radius of curvature of the flange deeply affects the final hem quality and therefore high rigidity of forming tools and tight assembling tolerance are highly recommended. An over-stroke of the main hemming punch is also proposed to reduce the turn-down.

  • PDF

Seismic Performance Evaluation of Cone-type Friction Pendulum Bearing System Using Shaking Table Test (진동대실험을 통한 원추형 마찰진자베어링의 내진성능 평가)

  • Jeon, Bub-Gyu;Chang, Sung-Jin;Kim, Nam-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.7
    • /
    • pp.599-608
    • /
    • 2011
  • FPS(friction pendulum system) is an isolation system which is possible to isolate structures from earthquake by pendulum characteristic. Natural frequencies of the structures could be determined by designing the radius of curvature of FPS. Thus, response vibration could be reduced by changing natural frequency of structures from FPS. But effective periods of recorded seismic wave were various and estimation of earthquake characteristic could be difficult. If effective periods of seismic wave correspond to natural frequency of structures with FPS, resonance can be occurred. Therefore, CFPBS(cone-type friction pendulum bearing system) was developed for controlling the acceleration and displacement of structure by the slope of friction surfaces. Structural natural frequency with CFPBS can be changed according to position of ball on the friction surface which was designed cone-type. Therefore, superstructures on CFPBS could be isolated from earthquake. In this study, seismic performance of CFPBS was evaluated by numerical analysis and shaking table test.

Design Optimization of A Multi-Blade Centrifugal Fan With Variable Design Flow Rate (설계유량을 변수로 한 원심다익송풍기의 최적설계)

  • Seo, Seoung-Jin;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1332-1338
    • /
    • 2004
  • This paper presents the response surface optimization method using three-dimensional Navier-Stokes analysis to optimize the shape of a forward-curved blades centrifugal fan. For numerical analysis, Reynolds-averaged Navier-Stokes equations with k-$\varepsilon$ turbulence model are discretized with finite volume approximations. In order to reduce huge computing time due to a large number of blades in forward-curved blades centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models. Three geometric variables, i.e., location of cut off, radius of cut off, and width of impeller, and one operating variable, i.e., flow rate, were selected as design variables. As a main result of the optimization, the efficiency was successfully improved. And, optimum design flow rate was found by using flow rate as one of design variables. It was found that the optimization process provides reliable design of this kind of fans with reasonable computing time.