• Title/Summary/Keyword: numerical examples

Search Result 2,872, Processing Time 0.026 seconds

Dynamic Analysis of Structures by Superposition of Modified Lanczos Vectors (수정된 Lanczos 벡터의 중첩을 통한 구조물의 동적해석)

  • Kim, Byoung-Wan;Jung, Hyung-Jo;Kim, Woon-Hak;Lee, In-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.11-18
    • /
    • 2003
  • This paper proposes modified Lanczos vector superposition method for efficient dynamic analysis of structures. Proposed method is based on the modified Lanczos algorithm that generates stiffness-orthonormal Lanczos vectors. Proposed method has better computing efficiency than the conventional Lanczos vector superposition method in the analysis of multi-input-loaded structures. The efficiency of proposed method is verified through numerical examples. Comparison with other vector superposition methods is also presented through numerical examples.

  • PDF

A Bayesian Approach to Software Optima I Re lease Policy (소프트웨어 최적출하정책의 베이지안 접근방법)

  • 김희수;이애경
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2002.06a
    • /
    • pp.273-273
    • /
    • 2002
  • In this paper, we investigate a software release policy with software reliability growth factor during the warranty period by assuming that the software reliability growth is assumed to occur after the testing phase with probability p and the software reliability growth is not assumed to occur after the testing phase with probability 1-p. The optimal release policy to minimize the expected total software cost is discussed. Numerical examples are shown to illustrate the results of the optimal policy. And we consider a Bayesian decision theoretic approach to determine an optimal software release policy. This approach enables us to update our uncertainty when determining optimal software release time, When the failure time is Weibull distribution with uncertain parameters, a bayesian approach is established. Finally, numerical examples are presented for illustrative propose.

  • PDF

Exact Solutions for Bending-Torsion Coupled Vibration of Composite Timoshenko Beam (복합재 티모센코 보의 굽힘 비틀림 연성 진동에 대한 엄밀해)

  • Hong, Seong-Uk;Gang, Byeong-Sik;Park, Jung-Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1559-1566
    • /
    • 2001
  • This paper proposes a dynamic analysis method for obtaining exact solutions of composite Timoshenko beams, which are inherently subjected to both the bending , and torsional vibrations. In this paper, the bending-torsion coupled vibration of composite Timoshenko beam is rigorously modelled and analyzed. Two numerical examples are provided to validate and illustrate the bending-torsion coupled vibration of composite Timoshenko beam structure. The numerical examples prove that the proposed method is of great use for the dynamic analysis of dynamic structures composed of multiply connected composite Timoshenko beams.

Optimum Design of Reinforced Concrete frames Considering Serviceability (사용성을 고려한 RC뼈대 구조물의 최적설계)

  • 김기대;박성규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.279-286
    • /
    • 2002
  • This study is concerned wiか the practical optimum design of concrete framed structures considering serviceability - deflection, crack, fatigue. The optimizing problems of framed structure are formulated with the objective function and the constraints which take the section properties as the design variables. The objective functions are formulated as the total cost of the structures and the constraints are derived by using the criteria with respect to safety and serviceability based on the part of concrete bridge in the Korea standard code of road bridge. The SLP method is introduced to solve the formulated nonlinear programming problems in this study and tested out through the numerical examples. This developed optimizing algorithm is tested out and examined through the numerical examples for the practical use of design on the concrete framed structures. And their results are compared and analyzed to examine the possibility of optimization, the applicability and the convergency of this algorithm.

  • PDF

Identification of Bearing Dynamic Coefficients Using Optimization Techniques (최적화기법에 의한 베어링 동특성 계수의 규명)

  • 김용한;양보석;안영공;김영찬
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.520-525
    • /
    • 2003
  • The determination of unknown parameters in rotating machinery is a difficult task and optimization techniques represent an alternative technique for parameter identification. The Simulated Annealing(SA) and Genetic Algorithm(GA) are powerful global optimization algorithm. This paper proposes new hybrid algorithm which combined GA with SA and local search algorithm for the purpose of parameter identification. Numerical examples are also presented to verify the efficiency of proposed algorithm. And, this paper presents the general methodology based on hybrid algorithm to identify unknown bearing parameters of flexible rotors using measured unbalance responses. Numerical examples are used to ilustrate the methodology used, which is then validated experimentally.

  • PDF

Structural damage detection using a multi-stage improved differential evolution algorithm (Numerical and experimental)

  • Seyedpoor, Seyed Mohammad;Norouzi, Eshagh;Ghasemi, Sara
    • Smart Structures and Systems
    • /
    • v.21 no.2
    • /
    • pp.235-248
    • /
    • 2018
  • An efficient method utilizing the multi-stage improved differential evolution algorithm (MSIDEA) as an optimization solver is presented here to detect the multiple-damage of structural systems. Natural frequency changes of a structure are considered as a criterion for damage occurrence. The structural damage detection problem is first transmuted into a standard optimization problem dealing with continuous variables, and then the MSIDEA is utilized to solve the optimization problem for finding the site and severity of structural damage. In order to assess the performance of the proposed method for damage identification, an experimental study and two numerical examples with considering measurement noise are considered. All the results demonstrate the effectiveness of the proposed method for accurately determining the site and severity of multiple-damage. Also, the performance of the MSIDEA for damage detection compared to the standard differential evolution algorithm (DEA) is confirmed by test examples.

Flexural free vibration of cantilevered structures of variable stiffness and mass

  • Li, Q.S.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.3
    • /
    • pp.243-256
    • /
    • 1999
  • Using appropriate transformations, the differential equation for flexural free vibration of a cantilever bar with variably distributed mass and stiffness is reduced to a Bessel's equation or an ordinary differential equation with constant coefficients by selecting suitable expressions, such as power functions and exponential functions, for the distributions of stiffness and mass. The general solutions for flexural free vibration of one-step bar with variable cross-section are derived and used to obtain the frequency equation of multi-step cantilever bars. The new exact approach is presented which combines the transfer matrix method and closed form solutions of one step bars. Two numerical examples demonstrate that the calculated natural frequencies and mode shapes of a 27-storey building and a television transmission tower are in good agreement with the corresponding experimental data. It is also shown through the numerical examples that the selected expressions are suitable for describing the distributions of stiffness and mass of typical tall buildings and high-rise structures.

HDQ-FD integrated methodology for nonlinear static and dynamic response of doubly curved shallow shells

  • Civalek, Omer;Ulker, Mehmet
    • Structural Engineering and Mechanics
    • /
    • v.19 no.5
    • /
    • pp.535-550
    • /
    • 2005
  • The non-linear static and dynamic response of doubly curved thin isotropic shells has been studied for the step and sinusoidal loadings. Dynamic analogues Von Karman-Donnel type shell equations are used. Clamped immovable and simply supported immovable boundary conditions are considered. The governing nonlinear partial differential equations of the shell are discretized in space and time domains using the harmonic differential quadrature (HDQ) and finite differences (FD) methods, respectively. The accuracy of the proposed HDQ-FD coupled methodology is demonstrated by the numerical examples. Numerical examples demonstrate the satisfactory accuracy, efficiency and versatility of the presented approach.

Comparison between two geometrical nonlinear methods for truss analyses

  • Greco, M.;Menin, R.C.G.;Ferreira, I.P.;Barros, F.B.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.6
    • /
    • pp.735-750
    • /
    • 2012
  • This paper presents a comparison between two different procedures to deal with the geometric nonlinear analysis of space trusses, considering its structural stability aspects. The first nonlinear formulation, called positional, uses nodal positions rather than nodal displacements to describe the finite elements kinematics. The strains are computed directly from the proposed position concept, using a Cartesian coordinate system fixed in space. The second formulation, called corotational, is based on the explicit separation between rigid body motion and deformed motion. The numerical examples demonstrate the performances and the convergence of the responses for both analyzed formulations. Two numerical examples were compared, including a lattice beam with postcritical behavior. Despite the two completely different approaches to deal with the geometrical nonlinear problem, the results present good agreement.

Modelling creep of high strength concrete

  • Dias-da-Costa, D.;Julio, E.N.B.S.
    • Computers and Concrete
    • /
    • v.7 no.6
    • /
    • pp.533-547
    • /
    • 2010
  • Recent developments in concrete mixing made possible the production of concretes with high compressive strength showing, simultaneously, high workability. These concretes also present high strengths at young ages, allowing the application of loads sooner. It is of fundamental importance to verify if creep models developed for current concrete still apply to these new concretes. First, a FEM-based software was adopted to test available creep models, most used for normal strength concrete, considering examples with known analytical results. Several limitations were registered, resulting in an incorrect simulation of three-dimensional creep. Afterwards, it was implemented a Kelvin-chain algorithm allowing the use of a chosen number of elements, which adequately simulated the adopted examples. From the comparison between numerical and experimental results, it was concluded that the adopted algorithm can be used to model creep of high strength concrete, if the material properties are previously experimentally assessed.