• 제목/요약/키워드: numerical evaluation

검색결과 2,640건 처리시간 0.034초

충격반향기법을 이용한 깊은 기초의 건전도 평가(수치해석) (Integrity Evaluation of Deep Foundations by Using Impact Echo Method(Numerical Study))

  • 김동수;박연홍
    • 한국지반공학회논문집
    • /
    • 제15권2호
    • /
    • pp.139-152
    • /
    • 1999
  • 근래에 들어 구조물의 대형화에 따라 현장타설 말뚝을 하부 구조물로서 광범위하게 적용하고 있다. 그러나 현장타설 말뚝에 결함이 생기면 상부 하중에 대한 지지력 저하와 함께 침하량이 증가하게 되어 상부 구조물에 치명적인 손실을 초래할 수 있다. 따라서 비파괴시험 기법에 의한 콘크리트 말뚝의 효과적인 건전도 평가기법 개발이 중요하게 대두되고 있다. 본 연구에서는 수치해석을 통하여 콘크리트 말뚝의 건전도 평가에 이용되는 충격반향기법의 적용성을 검토하였다. 3차원 축대칭 유한요소법을 이용하여 건전한 말뚝과 현장타설 말뚝의 전형적인 결함인 병목, 공동, 불량 콘크리트를 포함하는 말뚝, 그리고 지반 및 암반위에 놓인 말뚝에 관한 해석을 수행하였다. 해석결과 현장타설 말뚝에 적용되는 충격반향기법의 적용성 평가에 있어서 유한요소법이 효과적임을 알 수 있었다.

  • PDF

석괴댐의 축조 중 내부 침하 거동 평가 (Evaluation of Internal Settlement of Rockfill Dam under Construction)

  • 서민우;김용성
    • 한국농공학회논문집
    • /
    • 제52권4호
    • /
    • pp.45-52
    • /
    • 2010
  • The purposes of this research are to analyze the internal settlement behavior of Concrete Faced Rockfill Dam (CFRD) typed 'D dam' and to evaluate the stability of the 'D dam' during dam construction using internal settlement measurements and results of numerical analysis. The field measurements were obtained during dam construction period. The numerical analysis was also carried out for the same construction period. The numerical analysis focused mainly on prediction of stress and displacement behavior of 'D dam' during dam construction stage using input parameters obtained from laboratory tests, i.e. large triaxial tests. The behavior of 'D dam' was evaluated to be stable from comparing the results of field measurements and numerical analysis. A simple empirical equation is also presented to predict final settlement at the completion of dam construction, using settlement measurement monitored during dam embankment.

3차원 수치모형실험을 통한 오탁방지막의 오염물질 및 준설토 확산 저감특성 조사 (Investigation of Reducing Characteristics for the Spreading of Dredging Soil and the Diffusion of Contaminant by Silt Protector Curtain through Three Dimensional Numerical Model Experiment)

  • 홍남식
    • 한국해양공학회지
    • /
    • 제24권4호
    • /
    • pp.78-85
    • /
    • 2010
  • This study investigates reducing characteristics for the spreading of dredged soil and the diffusion of contaminant by silt protector curtain through three dimensional numerical experiment. The numerical medel is modified by combining the sediment transport characteristics for cohesive sediment into the previously developed model. Several numerical experiments have been given in order to investigate the reducing effect of silt protector using two dimensional numerical channel model under various parameters such as upstream flow velocity, depth of silt curtain and the position of dumped materials. Through the evaluation of several simulation results, we knew that the careful design has to be given in the determination of depth and position of silt protector.

대향류 확산화염에 대한 직접수치모사의 검증 (An Evaluation of a Direct Numerical Simulation for Counterflow Diffusion Flames)

  • 박외철
    • 한국안전학회지
    • /
    • 제16권4호
    • /
    • pp.74-81
    • /
    • 2001
  • A direct numerical simulation (DNS) was applied to nonpremixed counter-flow diffusion flames between oxidizer and fuel ducts. The objective of this study is to evaluate the numerical method for simulation of axisymmetric counterflow diffusion flames. Effects of computational domain size and grid size were scrutinized, and then the method was applied to air-methane diffusion flames. The results at zero gravity conditions were in good agreement with those obtained by the one-dimension flame code OPPDIF. It was confirmed thai the numerical method is applicable to the diffusion flames at the normal gravity conditions since the results clearly showed the effects of buoyancy and velocity ratio.

  • PDF

댐 안전성 평가를 위한 여수로 피어부의 정적 거동 분석 (Static Behavior Analysis of Spillway Pier for Dam Safety Evaluation)

  • 장봉석;임정열;이명규;이형준
    • 콘크리트학회논문집
    • /
    • 제19권1호
    • /
    • pp.11-18
    • /
    • 2007
  • 댐 안전성 평가를 위한 내진성능평가는 지속적으로 실시하였으나, 댐에서 취약부로 알려진 여수로 피어부에 대한 거동 분석에 대한 연구는 거의 이루어지지 않았다. 실제 지진발생시 여수로 피어가 국부 손상을 받기에 취약한 부분으로 추정되어 본 연구에서 댐의 내진성능 평가를 위한 기초 실험으로서 정적 시험을 수행하였다. 본 연구에서는 댐의 여수로 피어부에 대한 축소된 철근콘크리트 모형을 통한 강도모델을 구성하여 정적 모형 시험을 실시하고, 시험 결과의 분석, 구조해석을 통한 실제 구조물의 거동 및 균열하중, 극한하중에 대한 분석을 실시하였다. 대상 시험체에 대한 모형 시험 결과와 수치해석 결과는 서로 다른 파괴 거동을 나타내어 파괴하중이 서로 다르게 추정되었으나, 모형 시험체의 파괴 거동을 고려하는 경우에는 정적 시험과 해석을 통하여 실제 구조물의 균열 발생 하중과 극한하중을 추정할 수 있는 것으로 사료된다.

재료내 다중결함에 의한 SH형 초음파 산란장의 수치해석 (Numerical Analysis of Scattered Fields of Ultrasonic SH-Wave by Multi-Defects)

  • 이준현;이서일;조윤호
    • 비파괴검사학회지
    • /
    • 제18권4호
    • /
    • pp.304-312
    • /
    • 1998
  • 비파괴검사중의 하나인 초음파 탐상검사는 교량, 발전설비 및 석유화학플랜트 등의 각종 다양한 구조물들의 안전성 확보를 위한 내부결함 및 손상평가를 위하여 일반적으로 폭넓게 사용되고 있다. 초음파를 이용한 데 파괴 평가 기술은 각종 구조물에 존재하는 내부결함에 의한 산란신호를 통해 건전성을 평가하는 기법이므로 결함의 신뢰성 녹은 정량적 평가를 위해서는 결함으로부터의 초음파 산란산호특성에 대한 기본적 이해가 필수적이며 따라서 이를 위한 모델링 수치해석 연구가 요구된다. 본 연구에서는 동탄성 경계요소법을 이용하여 무한체내에 존재하는 다중기공 결함에 의한 초음파 수평횡파의 근거리 산란특성에 대하여 결함의 형상과 결함사이의 상호작용을 고려하여 해석하였다. 본 연구에서 얻어진 결과들은 결함검출 민감도의 개선 및 역변환 해석에 의한 정량적 비파괴 평가에 큰 도움을 줄 수 있다.

  • PDF

현장계측에 의한 연약지반 성토의 안정관리 기법 (Stabuility Evaluation Methods of Soft Clay under Embankment by Field Monitoring)

  • 강예묵
    • 한국농공학회지
    • /
    • 제41권2호
    • /
    • pp.92-103
    • /
    • 1999
  • A series of field tests were performed to suggest a rational method for the stability evaluation of soft clay. The behavior of settlement-displacement obtained by field monitoring system was used to compare and analyze with various stability evaluation methods, and to investigate the applicability of the methods for stability evaluation of soft clay. The limit equilibrium method, numerical analysis and field monitoring methods were used to analyze the stability evaluation. The horizontal displacement was abruptly increased when physicla properties of soft clay reached its maximum values and therefore, the values of these properties could be used to the fundamental data for stability evaluation. The evaluation of the stability of clay embankment was suggested to use inclination of ccrve rather than critical line, and the minimum satey factor of 1.2 or larger for natural clay was recommeded . Therefore, the evaluation of short term stability of soft clay could be effectively peformed with the hypefrbolic model and the field monitored data.

  • PDF

Evaluating LIMU System Quality with Interval Evidence and Input Uncertainty

  • Xiangyi Zhou;Zhijie Zhou;Xiaoxia Han;Zhichao Ming;Yanshan Bian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권11호
    • /
    • pp.2945-2965
    • /
    • 2023
  • The laser inertial measurement unit is a precision device widely used in rocket navigation system and other equipment, and its quality is directly related to navigation accuracy. In the quality evaluation of laser inertial measurement unit, there is inevitably uncertainty in the index input information. First, the input numerical information is in interval form. Second, the index input grade and the quality evaluation result grade are given according to different national standards. So, it is a key step to transform the interval information input by the index into the data form consistent with the evaluation result grade. In the case of uncertain input, this paper puts forward a method based on probability distribution to solve the problem of asymmetry between the reference grade given by the index and the evaluation result grade when evaluating the quality of laser inertial measurement unit. By mapping the numerical relationship between the designated reference level and the evaluation reference level of the index information under different distributions, the index evidence symmetrical with the evaluation reference level is given. After the uncertain input information is transformed into evidence of interval degree distribution by this method, the information fusion of interval degree distribution evidence is carried out by interval evidential reasoning algorithm, and the evaluation result is obtained by projection covariance matrix adaptive evolution strategy optimization. Taking a five-meter redundant laser inertial measurement unit as an example, the applicability and effectiveness of this method are verified.

A hybrid numerical simulation method for typhoon wind field over complex terrain

  • Huang, Wenfeng;Zhou, Huanlin
    • Wind and Structures
    • /
    • 제18권5호
    • /
    • pp.549-566
    • /
    • 2014
  • In spite of progress in the numerical simulation of typhoon wind field in atmospheric boundary layer (ABL), using typhoon wind field model in conjunction with Monte Carlo simulation method can only accurately evaluate typhoon wind field over a general terrain. This method is not enough for a reliable evaluation of typhoon wind field over the actual complex terrain with surface roughness and topography variations. To predict typhoon wind field over the actual complex terrain in ABL, a hybrid numerical simulation method combined typhoon simulation used the typhoon wind field model proposed by Meng et al. (1995) and CFD simulation in which the Reynolds averaged Navier-Stokes (RANS) equations and k-${\varepsilon}$ turbulence model are used. Typhoon wind filed during typhoon Dujuan and Imbudo are simulated using the hybrid numerical simulation method, and compared with the results predicted by the typhoon wind field model and the wind field measurement data collected by Fugro Geotechnical Services (FGS) in Hong Kong at the bridge site from the field monitoring system of wind turbulence parameters (FMS-WTP) to validate the feasibility and accuracy of the hybrid numerical simulation method. The comparison demonstrates that the hybrid numerical simulation method gives more accurate prediction to typhoon wind speed and direction, because the effect of topography is taken into account in the hybrid numerical simulation method.

Health risk assessment by CRPS and the numerical model for toluene in residential buildings

  • Choi, Haneul;Kim, Hyungkeun;Kim, Taeyeon
    • KIEAE Journal
    • /
    • 제17권5호
    • /
    • pp.33-41
    • /
    • 2017
  • Purpose: Indoor air quality in residential buildings needs to be evaluated over the long term. In previous research, there has been an attempt to perform the health risk assessment of pollutants by using numerical models as a method of long-term evaluation. However, the numerical model of this precedent study has limitations that do not reflect the actual concentration distribution. Therefore, this study introduces the CRPS index, constructs a numerical model that can reflect the concentration distribution, and then presents a more accurate health risk assessment method using it. At this time, the pollutants are toluene, which is a typical material released from building materials. Method: CRPS index was applied to existing numerical model to reflect concentration distribution. This was used to calculate concentrations at adult breathing area and to use them for exposure assessment in a health risk assessment. After that, we entered adult data and conducted a health risk assessment of toluene. Results: The non-carcinogenic risk of toluene was calculated to be 0.0060. This is 5% smaller than the existing numerical model, meaning that it is more accurate to predict the pollutant risks. This value is also lower than the US EPA reference value of 1. Therefore, under the conditions of this study, long-term exposure of adults to toluene has no impact on health.