• Title/Summary/Keyword: numerical calibration

Search Result 247, Processing Time 0.031 seconds

The Calibration Method of Time Resolved Laser Induced Incandescence Using Carbon Black Particles for the Soot Measurement at Exhaust Tail Pipe in Engine (엔진 배기단 적용을 위한 Time Resolved Laser Induced Icandescence (TIRE-LII) 신호의 보정 : 카본 입자 이용)

  • Oh Kwang Chul;Kim Deok Jin;Lee Chun Hwan;Lee Chun Beom
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.12 s.243
    • /
    • pp.1335-1343
    • /
    • 2005
  • The calibration technique of Time Resolved Laser Induced Incandescence was investigated both experimentally and numerically by using standard-sized carbon black particles for the instantaneous soot measurement at exhaust tail pipe in engine. The carbon black particles (19nm, 25nm, 45nm and 58nm) used in this study are similar, though not identical, to soot particle generated from flame not only in morphology but also in micro-structure. The amount of soot loading in flow was controled by a diluted gas (nitrogen) and was measured by the gravimetric method at exhaust pipe in calibrator. The successful calibrations of primary particle size and soot mass fraction were carried out at the range from 19nm to 58nm and from $0.25mg/m^3$ to $37mg/m^3$ respectively. And based on these results the numerical simulation of LII signal was tuned and the effect of an exhaust temperature variation on the decay rate of LII signal was corrected.

Calibration of Parameters for Predicting Hysteretic Behavior of Diagonally Reinforced Concrete Coupling Beams (반복하중을 받는 대각보강 콘크리트 연결보의 이력거동 예측을 위한 매개변수 결정방법)

  • Koh, Hyeyoung;Han, Sang Whan;Heo, Chang Dae;Lee, Chang Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.6
    • /
    • pp.303-310
    • /
    • 2017
  • The coupled shear wall system with coupling beams is an efficient structural system for high-rise buildings because it can provide excellent ductility and energy dissipation to the buildings. The objective of this study is to simulate the hysteretic behavior of diagonally reinforced concrete coupling beams including pinching and cyclic deteriorations in strength and stiffness using a numerical model. For this purpose, coupling beams are modeled with an elastic beam element and plastic spring element placed at the beam ends. Parameters for the analytical model was calibrated based on the test results of 6 specimens for diagonally reinforced concrete coupling beams. The analytical model with calibrated model parameters is verified by comparing the hysteretic curves obtained from analysis and experimental tests.

Study on the Air Bearings with Actively Controllable Magnetic Preloads for an Ultra-precision Linear Stage (초정밀 직선 이송계용 능동 자기예압 공기베어링에 관한 연구)

  • Ro, Seung-Kook;Kim, Soo-Hyun;Kwak, Yoon-Keun;Park, Chun-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.6
    • /
    • pp.134-142
    • /
    • 2008
  • In this paper, we propose a precise linear motion stage supported by magnetically preloaded air bearings. The eight aerostatic bearings with rectangular carbon porous pads were located only one side of vertical direction under the platen where four bearings are in both sides of horizontal direction as wrap-around-design, and this gives simpler configuration than which constrained by air bearings for all direction. Each of the magnetic actuators has a permanent magnet generating static magnetic flux far required preload and a coil to perturb the magnetic farce resulting adjustment of air- bearing clearance. The characteristics of porous aerostatic bearing are analyzed by numerical analysis, and analytic magnetic circuit model is driven for magnetic actuator to calculate preload and variation of force due to current. A 1-axis linear stage motorized with a coreless linear motor and a linear encoder was designed and built to verify this design concept. The load capacity, stiffness and preload force were examined and compared with analysis. With the active magnetic preloading actuators controlled with DSP board and PWM power amplifiers, the active on-line adjusting tests about the vertical, pitching and rolling motion were performed. It was shown that motion control far three DOF motions were linear and independent after calibration of the control gains.

Development and Application of Two Dimensional Water Quality Model on the Downstream of Han River (한강하류뷰에서의 2차원 수질모형의 개발 및 적용)

  • Han, Geon-Yeon;Lee, Eul-Rae
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.3
    • /
    • pp.261-274
    • /
    • 2002
  • The purpose of this study was to develop two dimensional contaminant transport numerical model by finite element method. The developed model system was tested for water quality analysis when contaminants from tributaries and sewage treatment Plants flow into the main river. In this study, the model was to perform calibration for reasonable parameter production and verification for reliability and accuracy. And, the proposed model was applied on the downstream of Han river using calibrated parameters. These results represented real con taminant distribution profile along the channel, and produced the good agreement in comparing calculated vague with measured value.

Identification of risk factors and development of the nomogram for delirium

  • Shin, Min-Seok;Jang, Ji-Eun;Lee, Jea-Young
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.4
    • /
    • pp.339-350
    • /
    • 2021
  • In medical research, the risk factors associated with human diseases need to be identified to predict the incidence rate and determine the treatment plan. Logistic regression analysis is primarily used in order to select risk factors. However, individuals who are unfamiliar with statistics outcomes have trouble using these methods. In this study, we develop a nomogram that graphically represents the numerical association between the disease and risk factors in order to identify the risk factors for delirium and to interpret and use the results more effectively. By using the logistic regression model, we identify risk factors related to delirium, construct a nomogram and predict incidence rates. Additionally, we verify the developed nomogram using a receiver operation characteristics (ROC) curve and calibration plot. Nursing home, stroke/epilepsy, metabolic abnormality, hemodynamic instability, and analgesics were selected as risk factors. The validation results of the nomogram, built with the factors of training set and the test set of the AUC showed a statistically significant determination of 0.893 and 0.717, respectively. As a result of drawing the calibration plot, the coefficient of determination was 0.820. By using the nomogram developed in this paper, health professionals can easily predict the incidence rate of delirium for individual patients. Based on this information, the nomogram could be used as a useful tool to establish an individual's treatment plan.

Predicting Long-Term Shoreline Change Due to the Construction of Submerged Breakwaters in Manseongri Beach (잠제설치에 따른 만성리해빈에서 해안선의 장기변화 예측)

  • Park, Il Heum;Kang, Seong Wuk;Kang, Tae-Soon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.527-535
    • /
    • 2016
  • The Manseongri Coast meets the sea on the southeast and is composed of coarse sediment as a mesotidal beach. The waves that strike the beach are stronger than the tides or tidal currents as external forces of beach deformation. Storm waves frequently reach significant wave heights of 2-3m and hit in spring and summer, leaving the sea calm during fall and winter. Incident waves reach remarkable heights that correspond with observed shoreline changes. The shoreline erodes in spring and summer due to these strong waves but recovers in fall and winter as a result of the more moderate waves. On the basis of these observed results, a numerical calibration for experiments on shoreline change was established. Results revealed that according to hindcast data, calculated shoreline changes agreed with the observed shoreline, with a minimum RMS error of 1.26m with calibration parameters $C_1=0.2$ and $C_2=1C_1$. Using these calibration parameters, long-term shoreline change was predicted after the construction of submerged breakwaters and jetties, etc. The numerical model showed that the shoreline would move forward by 5-15m behind the submerged breakwaters and recede by 5-15m north of the structure.

A study on slim-hole density logging based on numerical simulation (소구경 시추공에서의 밀도검층 수치모델링 연구)

  • Ku, Bonjin;Nam, Myung Jin;Hwang, Seho
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.4
    • /
    • pp.227-234
    • /
    • 2012
  • In this study, we make simulation of density log using a Monte Carlo N-Particle (MCNP) algorithm to make an analysis on density logging under different borehole environments, since density logging is affected by various borehole conditions like borehole size, density of borehole fluid, thickness and type of casing, and so on. MCNP algorithm has been widely used for simulation of problems of nuclear particle transportation. In the simulation, we consider the specific configuration of a tool (Robertson Geologging Co. Ltd) that Korea institute of geoscience and mineral resources (KIGAM) has used. In order to measure accurate bulk density of a formation, it is essential to make a calibration and correction chart for the tool under considerations. Through numerical simulation, this study makes calibration plot of the density tool in material with several known bulk densities and with boreholes of several different diameters. In order to make correction charts for the density logging, we simulate and analyze measurements of density logging under different borehole conditions by considering borehole size, density of borehole fluid, and presence of casing.

Dynamic Load Allowance of Highway Bridges by Numerical Dynamic Analysis for LRFD Calibration (LRFD 보정을 위한 동적해석에 의한 도로교의 동적하중허용계수)

  • Chung, Tae Ju;Shin, Dong-Ku;Park, Young-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.305-313
    • /
    • 2008
  • A reliability based calibration of dynamic load allowance (DLA) of highway bridge is performed by numerical dynamic analysis of various types of bridges taking into account of the road surface roughness and bridge-vehicle interaction. A total of 10 simply supported bridges with three girder types in the form of prestressed concrete girder, steel plate girder, and steel box girder is analyzed. The cross sections recommended in "The Standardized Design of Highway Bridge Superstructure" by the Korean Ministry of Construction are used for the prestressed concrete girder bridges and steel plate girder bridges while the box girder bridges are designed by the LRFD method. Ten sets of road surface roughness for each bridge are generated from power spectral density (PSD) function by assuming the roadway as "Average Road". A three dimensionally modeled 5-axle tractor-trailer with its gross weight the same as that of DB-24 design truck is used in the dynamic analysis. For the finite element modeling of superstructure, beam elements for the main girder, shell elements for concrete deck, and rigid links between main girder and concrete deck are used. The statistical mean and coefficient of variation of DLA are obtained from a total of 100 DLA results for 10 different bridges with each having 10 sets of road surface roughness. Applying the DLA statistics obtained, the DLA is finally calibrated in a reliability based LRFD format by using the formula developed in the calibration of OHBDC code.

Response characterization of slim-hole density sonde using Monte Carlo method (Monte Carlo 방법을 이용한 소구경용 밀도 존데의 반응 특성)

  • Won, Byeongho;Hwang, Seho;Shin, Jehyun;Park, Chang Je;Kim, Jongman;Hamm, Se-Yeong
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.3
    • /
    • pp.155-162
    • /
    • 2014
  • We performed MCNP modeling for density log, and examined its reliability and validity comparing the correction curves from physical borehole model. Based on the constructed numerical model, numerical modelings of density sonde in three-inch borehole were carried out under the various conditions such as the existence and type of casing or fluid, and also the stand-off between the sonde and borehole wall. These results of numerical modeling quantitatively reflect effects of casing and fluid in borehole, and moreover, demonstrate constant patterns with interval change from borehole wall. From this study, numerical modeling using MCNP shows a good applicability for well logging, and therefore, can be efficiently used for the calibration of well logging data under the various borehole conditions.

Influence of the Flow Stress of the Rivet on the Numerical Prediction of the Self-Piercing Rivet (SPR) Joining (Self-Piercing Rivet 접합공정의 수치예측에 미치는 리벳 유동응력의 영향)

  • Kim, S.H.;Bae, G.;Song, J.H.;Park, K.Y.;Park, N.
    • Transactions of Materials Processing
    • /
    • v.29 no.5
    • /
    • pp.257-264
    • /
    • 2020
  • This paper is concerned with the influence of the plastic property of the rivet on the numerical prediction of the Self-Piercing Rivet (SPR) Joining. In order to predict the plastic property of the rivet, a ring compression specimen was directly fabricated from the rivet used for the mechanical joining of dissimilar materials, and the FE analysis together with the ring compression test was iteratively carried out by changing the plastic property of the rivet. For reliable FE analysis, a friction coefficient was estimated based on a friction calibration curve, measuring the reductions in inner diameter and height of the ring specimen after the compression test. From each simulation result, the force-displacement curves were then compared from each other so as to obtain the rivet plastic property that shows good agreement with the experimental result. The SPR joining between GA590 1.0t and Al5052 2.0t was conducted, and the numerical prediction was performed with the use of the plastic property evaluated based on the inverse analysis and the one referred from Mori et al. [11]. Comparison of the experiment and the numerical predictions in terms of the interlock and bottom thickness revealed that the reliable evaluation of the plastic property of the rivet is necessary for the trustworthy numerical prediction of the SPR joining.