• Title/Summary/Keyword: numerical

Search Result 42,782, Processing Time 0.069 seconds

Inelastic Dynamic Analysis of Structure Subjected to Across-Wind Load (풍직각방향 풍하중이 작용하는 구조물의 비탄성 동적 해석)

  • Ju-Won Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.3
    • /
    • pp.185-192
    • /
    • 2023
  • In this study, fluctuating wind velocity for time history analysis is simulated by a single variate, single-dimensional random process using the KBC2022 spectrum about across-wind direction. This study analyzed and obtained the inelastic dynamic response for structures modeled as a single-degree-of-freedom system. It is assumed that the wind response is excellent in the primary mode, the change in vibration owing to plasticization is minor, along-wind vibration and across-wind vibration are independent, and the effect of torsional vibration is small. The numerical results, obtained by the Newmark-𝛽 method, shows the time-history responses and trends of maximum displacements. As a result of analyzing the inelastic dynamic response of the structure with the second stiffness ratio(𝛼) and yield displacement ratio (𝛽) as variables, it is identified that as the yield displacement ratio (𝛽) increases when the second stiffness ratio is constant, the maximum displacement ratio decreases, then reaches a minimum value, and then increases. When the stiffness ratio is greater than 0.5, there is a yield point ratio at which the maximum displacement ratio is less than 1, indicating that the maximum deformation is reduced compared to the elastically designed building even if the inelastic behavior is permitted in the inelastic wind design.

A Nonlinear Truss Finite Element Model for Structures with Negative Poisson Effect Accompanied by Tensile Buckling (인장 좌굴 현상을 수반하는 음의 포아송 효과를 가지는 구조물 해석을 위한 비선형 트러스 유한요소 모델)

  • Tae-Wan Kim;Jun-Sik Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.3
    • /
    • pp.193-201
    • /
    • 2023
  • In this study, a nonlinear truss finite element is developed to analyze structures with negative Poisson effect-induced tensile buckling. In general, the well-known buckling phenomenon is a stability problem under a compressive load, whereas tensile buckling occurs because of local compression caused by tension. It is not as well-known as classical buckling because it is a recent study. The mechanism of tensile buckling can be briefly explained from an energy standpoint. The nonlinear truss finite element with a torsional spring is formulated because the finite element has not been reported in the literature yet. The post-buckling analysis is then performed using the generalized displacement control method, which reveals that the torsional spring plays an important role in tensile buckling. Structures that mimic a negative Poisson effect can be constructed using such post-buckling behaviors, and one of the possible applications is a mechanical switch. The results obtained are compared to those of analytical solutions and commercial finite element analysis to assess the validity of the proposed finite element model. The numerical results show that the developed finite element model could be a viable option for the basic design of nonlinear structures with a negative Poisson effect.

Seismic performance assessment of single pipe piles using three-dimensional finite element modeling considering different parameters

  • Duaa Al-Jeznawi;Jitendra Khatti;Musab Aied Qissab Al-Janabi;Kamaldeep Singh Grover;Ismacahyadi Bagus Mohamed Jais;Bushra S Albusoda;Norazlan Khalid
    • Earthquakes and Structures
    • /
    • v.24 no.6
    • /
    • pp.455-475
    • /
    • 2023
  • The present study investigates the non-linear soil-pile interaction using three-dimensional (3D) non-linear finite element models. The numerical models were validated by using the results of extensive pile load and shaking table tests. The pile performance in liquefiable and non-liquefiable soil has been studied by analyzing the liquefaction ratio, pile lateral displacement (LD), pile bending moment (BM), and frictional resistance (FR) results. The pile models have been developed for the different ground conditions. The study reveals that the results obtained during the pile load test and shaking cycles have good agreement with the predicted pile and soil response. The soil density, peak ground acceleration (PGA), slenderness ratio (L/D), and soil condition (i.e., dry and saturated) are considered during modeling. Four ground motions are used for the non-linear time history analyses. Consequently, design charts are proposed depended on the analysis results to be used for design practice. Eleven models have been used to validate the capability of these charts to capture the soil-pile response under different seismic intensities. The results of the present study demonstrate that L/D ratio slightly affects the lateral displacement when compared with other parameters. Also, it has been observed that the increasing in PGA and decreasing L/D decreases the excess pore water pressure ratio; i.e., increasing PGA from 0.1 g to 0.82 g of loose sand model, decrease the liquefaction ratio by about 50%, and increasing L/D from 15 to 75 of the similar models (under Kobe earthquake), increase this ratio by about 30%. This study reveals that the lateral displacement increases nonlinearly under both dry and saturated conditions as the PGA increases. Similarly, it is observed that the BM increases under both dry and saturated states as the L/D ratio increases. Regarding the acceleration histories, the pile BM was reduced by reducing the acceleration intensity. Hence, the pile BM decreased to about 31% when the applied ground motion switched from Kobe (PGA=0.82 g) to Ali Algharbi (PGA=0.10 g). This study reveals that the soil conditions affect the relationship pattern between the FR and the PGA. Also, this research could be helpful in understanding the threat of earthquakes in different ground characteristics.

Scale Effect Analysis of LNG Cargo Containment System Using a Thermal Resistance Network Model (열저항 네트워크 모델을 이용한 LNG 화물창 Scale Effect 분석)

  • Hwalong You;Taehoon Kim;Changhyun Kim;Minchang Kim;Myungbae Kim;Yong-Shik Han;Le-Duy Nguyen;Kyungyul Chung;Byung-Il Choi;Kyu Hyung Do
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.4
    • /
    • pp.222-230
    • /
    • 2023
  • In the present work, the scale effect on the Boil-Off Rate (BOR) was investigated based on an analytical method to systematically evaluate the thermal performance of a Liquefied Natural Gas (LNG) Cargo Containment System (CCS). A two-dimensional thermal resistance network model was developed to accurately estimate the heat ingress into the CCS from the outside. The analysis was performed for the KC-1 LNG membrane tank under the IGC and USCG design conditions. The ballast compartment of both the LNG tank and cofferdam was divided into six sections and a thermal resistance network model was made for each section. To check the validity of the developed model, the analysis results were compared with those from existing literature. It was shown that the BOR values under the IGC and USCG design conditions were agreed well with previous numerical results with a maximum error of 1.03% and 0.60%, respectively. A SDR, the scale factor of the LNG CCS was introduced and the BOR, air temperature of the ballast compartment, and the surface temperature of the inner hull were obtained to examine the influence of the SDR on the thermal performance. Finally, a correlation for the BOR was proposed, which could be expressed as a simple formula inversely proportional to the SDR. The proposed correlation could be utilized for predicting the BOR of a full-scale LNG tank based on the BOR measurement data of lab-scale model tanks.

Numerical modeling of tidal discharge through a permeable dyke from varying surface gradients (내·외 수위차를 이용한 투수성 제체의 조류량 모델링)

  • Hong, Seong Soo;Kim, Tae In;Nguyen, Thao Thi Hoang;Gu, Jeong Bon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.219-219
    • /
    • 2021
  • 서해안 중부 아산만 안쪽에 위치하는 평택·당진항에서 장래 개발 예정인 면적 6.9km2의 내항2공구 수역은 내항2공구 외곽호안 - 내항가호안 - 내항2공구 중앙 분리호안으로 둘러싸여 있으며, 투수성 제체인 내항가호안 사석 공극을 통하여 해수가 유통되어 조석 현상이 나타나고 있다. 2020년 8~9월의 2개월간 내항2공구 외곽호안 내·외측에서 조석 관측 결과, 2공구 수역의 최대 조차는 1.97m로서 외측 해역 최대 조차 9.79m의 20.1%이고 내·외측의 순간 수위차는 최대 5.82m에 달한다. 내항가호안은 내항2공구 개발이 거의 완료되는 시기까지 유지될 예정이므로 2공구 개발에 따른 내측 조차와 내·외측 수위차의 변화를 정확하게 예측하는 것은 내항가호안 제체 안전에 매우 중요하다. 이 연구의 목적은 장래 개발단계별 변화 예측에 앞서, 관측이 이루어진 2개월간의 실시간 내측 조석과 내·외측 수위차 시계열을 Delft3D-Flow를 이용하여 기 구축된 아산만 수치모델에서 재현하는 것이다. 내항가호안 제체 통과 유량은 내·외측 수위차에 비례하는 것으로 가정하고, 수위차 - 유량 관계식을 도출하였다. 수위차는 평택 조위관측소와 내항2공구 수역의 1분 간격 관측 조위로부터 산출하였고, 제체 통과 유량은 내측 조위(z, 평택항 DL 기준, m) - 수용적(V, 106m3) 관계식으로 계산하였다. 내측 조위 - 수용적 관계식은 수심측량 성과로부터 V = 0.28z2 + 3.73z + 2.96 (r2=1.00)으로 얻어졌다. 다양한 함수식의 적합성을 검토한 결과, 다음과 같은 수위차(𝚫z, m) - 제체 통과 유량(Q, m3/s) 관계식을 도출하였다. [내항가호안 내측으로 유입시] $Q_{IN}=\{\begin{array}{lll}{\exp}\{0.54\;{\ln}({\Delta}z)+6.00\}&&\text{; }{\Delta}z{\leq}1.8\\219.82{\Delta}z+158.56&&\text{; }{\Delta}z>1.8\end{array}\;\;(r^2=0.86)$ [내항가호안 외측으로 유출시] QOUT = -exp{0.44 ln(-𝚫z) + 5.70} (r2=0.59) 매 𝚫t 마다 제체 통과 유량을 계산하는 알고리즘을 Delft3D 소스 코드에 추가하고, 8개 분조 합성조석(M2, S2, K1, O1, N2, K2, P1, Q1)을 외력조건으로 설정하여 2개월간 조석 수치모델링을 수행하였다. 내항2공구 수역의 매 시별 조위 관측치와 모델치를 비교한 결과, 오차는 -0.37~0.37m의 범위이고, 오차 평균은 0.02m, 절대오차 평균은 0.08m로 상당히 정확하게 실시간 조위 변동을 모의하였다. 보정·검정된 이 모델을 이용하여 향후 내항2공구 개발에 따른 내측 조석과 내·외측 수위차 변화에 대한 예측모의를 진행할 예정이다.

  • PDF

A study on the evaluation method and reinforcement effect of face bolt for the stability of a tunnel face by a three dimensional numerical analysis (터널막장안정 평가기법 및 막장볼트의 보강효과에 관한 수치해석적 연구)

  • Kim, Sung-ryul;Yoon, Ji-Sun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.11-22
    • /
    • 2009
  • Tunnel excavation with several sections and appropriate auxiliary measures such as face bolt and pre-grouting are widely used in case of weak and less rigid ground for the stability of a tunnel face during excavation. This papers first described the evaluation methods proposed in technical literature to maintain the tunnel face stable, and then studied by FEM analysis whether face reinforcement is need in what degree of ground deformation and strength features for the stability of a tunnel face when excavating by full excavation with sub-bench. Lastly, a three dimensional FEM analysis was performed to study how the tunnel face itself and the ground around the tunnel behave depending on different bolt layouts, length of bolts, number of bolts. There were relative differences in comparison of results on the stability of a tunnel face by a theoretical evaluation methods and FEM analysis, but the same in reinforced effect of face. It was found that the stability of a tunnel face can be obtained with face bolt installed longer than 1.0D (tunnel width), bolt density of about 1 bolt per every $1.5\;m^2$ (layout of grid type), and reinforcement area of $120^{\circ}$ arch area of upper section.

An Experimental Study on Electromagnetic Properties in Early-Aged Cement Mortar under Different Curing Conditions (양생조건에 따른 초기재령 시멘트 모르타르의 전자기 특성에 대한 실험적 연구)

  • Kwon, Seung-Jun;Song, Ha-Won;Maria, Q. Feng
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.737-746
    • /
    • 2008
  • Recently, NDTs (Non-Destructive Techniques) using electromagnetic(EM) properties are applied to the performance evaluation for RC (Reinforced Concrete) structures. Since nonmetallic materials which are cement-based system have their unique dielectric constant and conductivity, they can be characterized and changed with different mixture conditions like W/C (water to cement) ratios and unit cement weight. In a room condition, cement mortar is generally dry so that porosity plays a major role in EM properties, which is determined at early-aged stage and also be affected by curing condition. In this paper, EM properties (dielectric constant and conductivity) in cement mortar specimens with 4 different W/C ratios are measured in the wide region of 0.2 GHz~20 GHz. Each specimen has different submerged curing period from 0 to 28 days and then EM measurement is performed after 4 weeks. Furthermore, porosity at the age of 28 days is measured through MIP (Mercury Intrusion Porosimeter) and saturation is also measured through amount of water loss in room condition. In order to evaluate the porosity from the initial curing stage, numerical analysis based on the modeling for the behavior in early-aged concrete is performed and the calculated results of porosity and measured EM properties are analyzed. For the convenient comparison with influencing parameters like W/C ratios and curing period, EM properties from 5 GHz to 15 GHz are averaged as one value. For 4 weeks, the averaged dielectric constant and conductivity in cement mortar are linearly decrease with higher W/C ratios and they increase in proportion to the square root of curing period regardless of W/C ratios.

Matching of Topic Words and Non-Sympathetic Types on YouTube Videos for Predicting Video Preference (영상 선호도 예측을 위한 유튜브 영상에 대한 토픽어와 비공감 유형 매칭)

  • Jung, Jimin;Kim, Seungjin;Lee, Dongyun;Kim, Gyotae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.189-192
    • /
    • 2021
  • YouTube, the world's largest video sharing platform, is loved by many users in that it provides numerous videos and makes it easy to get helpful information. However, the ratio of like/hate for each video varies according to the subject or upload time, even though they are in the same channel; thus, previous studies try to understand the reason by inspecting some numerical statistics such as the ratio and view count. They can help know how each video is preferred, but there is an explicit limitation to identifying the cause of such preference. Therefore, this study aims to determine the reason that affects the preference through matching between topic words extracted from comments in each video and non-sympathetic types defined in advance. Among the top 10 channels in the field of 'pets' and 'cooking', where outliers occur a lot, the top 10 videos (the threshold of pet: 4.000, the threshold of cooking: 0.723) with the highest ratio were selected. 11,110 comments collected totally, and topics were extracted and matched with non-sympathetic types. The experimental results confirmed that it is possible to predict whether the rate of like/hate would be high or which non-sympathetic type would be by analyzing the comments.

  • PDF

Analysis of Stability and Behavior of Slope with Solar Power Facilities Considering Seepage of Rainfall (태양광 발전시설이 설치된 사면의 강우시 침투를 고려한 안정성 및 거동 분석)

  • Yu, Jeong-Yeon;Lee, Dong-Gun;Song, Ki-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.7
    • /
    • pp.57-67
    • /
    • 2023
  • Slope failures during rainfall have been observed in mountainous areas of South Korea as a result of the presence of solar power facilities. The seepage behavior and pore pressure distribution differ from typical slopes due to the presence of impermeable solar panels, and the load imposed by the solar power structures also affects the slope behavior. This study aims to develop a method for evaluating the stability of slopes with solar power facilities and to analyze vulnerable points by considering the maximum slope displacement. To assess the slope stability and predict behavior while considering rainfall seepage, a combined seepage analysis and finite difference method numerical analysis were employed. For the selected site, various variables were assumed, including parameters related to the Soil Water Characteristic Curve, strength parameters that satisfy the Mohr-Coulomb failure criterion, soil properties, and topographic factors such as slope angle and bedrock depth. The factors with the most significant influence on the factor of safety (FOS) were identified. The presence of solar power facilities was found to affect the seepage distribution and FOS, resulting in a decreasing trend due to rainfall seepage. The maximum displacement points were concentrated near the upper (crest) and lower (toe) sections of the slope.

An Analysis of Safety Zone Appropriateness of Urban Railway Box Structures by Adjacent Excavation Using Machine Learning Technique (머신러닝 기법을 적용한 인접굴착에 따른 도시철도 박스구조물의 안전영역 적정성 분석)

  • Jung-Youl Choi;Jae-Seung Lee;Jee-Seung Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.669-676
    • /
    • 2023
  • This study analyzed the relationship between major parameters and numerical analysis results according to various excavations conducted around the urban railway, application of machine learning techniques and verified the scope of influence of the adjacent excavation on the existing urban railway box structure and the appropriateness of the safety area. This study targeted the actual negotiated adjacent excavation works and box structures around the urban railway, and the analysis was conducted on the most representative two-line box structures. The analysis confirmed that the difference in depth of urban railway, excavation depth of adjacent excavation, and depth of underground water level are important parameters, and the difference in excavation depth of adjacent excavation is the parameter that affects the behavior of underground box structures and is an important requirement for setting safety areas. In particular, the deeper the depth of the adjacent excavation work, the greater the effect on the deflection of the underground box structure, and the horizontal separation distance, one of the important requirements for determining the management grade of the existing adjacent excavation work, is relatively small.