• Title/Summary/Keyword: number word use

Search Result 144, Processing Time 0.02 seconds

Analysis on Types of Scientific Emoticon Made by Science-Gifted Elementary School Students and their Perceptions on Making Scientific Emoticons (초등 과학영재 학생의 과학티콘 유형 및 과학티콘 만들기에 대한 인식 분석)

  • Jeong, Jiyeon;Kang, Hunsik
    • Journal of The Korean Association For Science Education
    • /
    • v.42 no.3
    • /
    • pp.311-324
    • /
    • 2022
  • This study analyzed the types of scientific emoticons made by science-gifted elementary school students and their perceptions on making scientific emoticons. To do this, 71 students from 4th to 6th graders of two gifted science education center in Seoul were selected. Scientific emoticons made by the students were analyzed according to the number and types. Their perceptions on making scientific emoticons were also analyzed through a questionnaire and group interviews. In the analyses for types of text in the scientific emoticons, 'word type' and 'sentence type' were made more than 'question and answer type'. And the majority of students made more 'pun using pronunciation type' and 'mixed type' than other types. They also made more 'graphic type' and 'animation type' than 'text type' in the images of the scientific emoticons. In the analyses for the information of the scientific emoticons, 'positive emotion type' and 'negative emotion type' of scientific emoticons were made evenly. The students made more 'new creation type' than 'partial correction type' and 'entire reconstruction type'. They also used scientific knowledge that preceded the knowledge of science curriculum in their grade level. The scientific knowledge of chemistry was used more than physics, biology, earth science, and combination field. 'Name utilization type' was more than 'characteristic utilization type' and 'principle utilization type'. Students had various positive perceptions in making scientific emoticons such as 'increase of scientific knowledge', 'increase of various higher-order thinking abilities', 'ease of explanation, use, memory, and understanding of scientific knowledge', 'increase of fun, enjoyment, and interest about science and science learning', and 'increase of opportunity to express emotions'. They were also aware of some limitations related to 'difficulties in the process of making scientific emoticons', 'lack of time', and 'limit that it may end just for fun'. Educational implications of these findings are discussed.

Visualizing the Results of Opinion Mining from Social Media Contents: Case Study of a Noodle Company (소셜미디어 콘텐츠의 오피니언 마이닝결과 시각화: N라면 사례 분석 연구)

  • Kim, Yoosin;Kwon, Do Young;Jeong, Seung Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.89-105
    • /
    • 2014
  • After emergence of Internet, social media with highly interactive Web 2.0 applications has provided very user friendly means for consumers and companies to communicate with each other. Users have routinely published contents involving their opinions and interests in social media such as blogs, forums, chatting rooms, and discussion boards, and the contents are released real-time in the Internet. For that reason, many researchers and marketers regard social media contents as the source of information for business analytics to develop business insights, and many studies have reported results on mining business intelligence from Social media content. In particular, opinion mining and sentiment analysis, as a technique to extract, classify, understand, and assess the opinions implicit in text contents, are frequently applied into social media content analysis because it emphasizes determining sentiment polarity and extracting authors' opinions. A number of frameworks, methods, techniques and tools have been presented by these researchers. However, we have found some weaknesses from their methods which are often technically complicated and are not sufficiently user-friendly for helping business decisions and planning. In this study, we attempted to formulate a more comprehensive and practical approach to conduct opinion mining with visual deliverables. First, we described the entire cycle of practical opinion mining using Social media content from the initial data gathering stage to the final presentation session. Our proposed approach to opinion mining consists of four phases: collecting, qualifying, analyzing, and visualizing. In the first phase, analysts have to choose target social media. Each target media requires different ways for analysts to gain access. There are open-API, searching tools, DB2DB interface, purchasing contents, and so son. Second phase is pre-processing to generate useful materials for meaningful analysis. If we do not remove garbage data, results of social media analysis will not provide meaningful and useful business insights. To clean social media data, natural language processing techniques should be applied. The next step is the opinion mining phase where the cleansed social media content set is to be analyzed. The qualified data set includes not only user-generated contents but also content identification information such as creation date, author name, user id, content id, hit counts, review or reply, favorite, etc. Depending on the purpose of the analysis, researchers or data analysts can select a suitable mining tool. Topic extraction and buzz analysis are usually related to market trends analysis, while sentiment analysis is utilized to conduct reputation analysis. There are also various applications, such as stock prediction, product recommendation, sales forecasting, and so on. The last phase is visualization and presentation of analysis results. The major focus and purpose of this phase are to explain results of analysis and help users to comprehend its meaning. Therefore, to the extent possible, deliverables from this phase should be made simple, clear and easy to understand, rather than complex and flashy. To illustrate our approach, we conducted a case study on a leading Korean instant noodle company. We targeted the leading company, NS Food, with 66.5% of market share; the firm has kept No. 1 position in the Korean "Ramen" business for several decades. We collected a total of 11,869 pieces of contents including blogs, forum contents and news articles. After collecting social media content data, we generated instant noodle business specific language resources for data manipulation and analysis using natural language processing. In addition, we tried to classify contents in more detail categories such as marketing features, environment, reputation, etc. In those phase, we used free ware software programs such as TM, KoNLP, ggplot2 and plyr packages in R project. As the result, we presented several useful visualization outputs like domain specific lexicons, volume and sentiment graphs, topic word cloud, heat maps, valence tree map, and other visualized images to provide vivid, full-colored examples using open library software packages of the R project. Business actors can quickly detect areas by a swift glance that are weak, strong, positive, negative, quiet or loud. Heat map is able to explain movement of sentiment or volume in categories and time matrix which shows density of color on time periods. Valence tree map, one of the most comprehensive and holistic visualization models, should be very helpful for analysts and decision makers to quickly understand the "big picture" business situation with a hierarchical structure since tree-map can present buzz volume and sentiment with a visualized result in a certain period. This case study offers real-world business insights from market sensing which would demonstrate to practical-minded business users how they can use these types of results for timely decision making in response to on-going changes in the market. We believe our approach can provide practical and reliable guide to opinion mining with visualized results that are immediately useful, not just in food industry but in other industries as well.

Target-Aspect-Sentiment Joint Detection with CNN Auxiliary Loss for Aspect-Based Sentiment Analysis (CNN 보조 손실을 이용한 차원 기반 감성 분석)

  • Jeon, Min Jin;Hwang, Ji Won;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.4
    • /
    • pp.1-22
    • /
    • 2021
  • Aspect Based Sentiment Analysis (ABSA), which analyzes sentiment based on aspects that appear in the text, is drawing attention because it can be used in various business industries. ABSA is a study that analyzes sentiment by aspects for multiple aspects that a text has. It is being studied in various forms depending on the purpose, such as analyzing all targets or just aspects and sentiments. Here, the aspect refers to the property of a target, and the target refers to the text that causes the sentiment. For example, for restaurant reviews, you could set the aspect into food taste, food price, quality of service, mood of the restaurant, etc. Also, if there is a review that says, "The pasta was delicious, but the salad was not," the words "steak" and "salad," which are directly mentioned in the sentence, become the "target." So far, in ABSA, most studies have analyzed sentiment only based on aspects or targets. However, even with the same aspects or targets, sentiment analysis may be inaccurate. Instances would be when aspects or sentiment are divided or when sentiment exists without a target. For example, sentences like, "Pizza and the salad were good, but the steak was disappointing." Although the aspect of this sentence is limited to "food," conflicting sentiments coexist. In addition, in the case of sentences such as "Shrimp was delicious, but the price was extravagant," although the target here is "shrimp," there are opposite sentiments coexisting that are dependent on the aspect. Finally, in sentences like "The food arrived too late and is cold now." there is no target (NULL), but it transmits a negative sentiment toward the aspect "service." Like this, failure to consider both aspects and targets - when sentiment or aspect is divided or when sentiment exists without a target - creates a dual dependency problem. To address this problem, this research analyzes sentiment by considering both aspects and targets (Target-Aspect-Sentiment Detection, hereby TASD). This study detected the limitations of existing research in the field of TASD: local contexts are not fully captured, and the number of epochs and batch size dramatically lowers the F1-score. The current model excels in spotting overall context and relations between each word. However, it struggles with phrases in the local context and is relatively slow when learning. Therefore, this study tries to improve the model's performance. To achieve the objective of this research, we additionally used auxiliary loss in aspect-sentiment classification by constructing CNN(Convolutional Neural Network) layers parallel to existing models. If existing models have analyzed aspect-sentiment through BERT encoding, Pooler, and Linear layers, this research added CNN layer-adaptive average pooling to existing models, and learning was progressed by adding additional loss values for aspect-sentiment to existing loss. In other words, when learning, the auxiliary loss, computed through CNN layers, allowed the local context to be captured more fitted. After learning, the model is designed to do aspect-sentiment analysis through the existing method. To evaluate the performance of this model, two datasets, SemEval-2015 task 12 and SemEval-2016 task 5, were used and the f1-score increased compared to the existing models. When the batch was 8 and epoch was 5, the difference was largest between the F1-score of existing models and this study with 29 and 45, respectively. Even when batch and epoch were adjusted, the F1-scores were higher than the existing models. It can be said that even when the batch and epoch numbers were small, they can be learned effectively compared to the existing models. Therefore, it can be useful in situations where resources are limited. Through this study, aspect-based sentiments can be more accurately analyzed. Through various uses in business, such as development or establishing marketing strategies, both consumers and sellers will be able to make efficient decisions. In addition, it is believed that the model can be fully learned and utilized by small businesses, those that do not have much data, given that they use a pre-training model and recorded a relatively high F1-score even with limited resources.

Research Framework for International Franchising (국제프랜차이징 연구요소 및 연구방향)

  • Kim, Ju-Young;Lim, Young-Kyun;Shim, Jae-Duck
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.4
    • /
    • pp.61-118
    • /
    • 2008
  • The purpose of this research is to construct research framework for international franchising based on existing literature and to identify research components in the framework. Franchise can be defined as management styles that allow franchisee use various management assets of franchisor in order to make or sell product or service. It can be divided into product distribution franchise that is designed to sell products and business format franchise that is designed for running it as business whatever its form is. International franchising can be defined as a way of internationalization of franchisor to foreign country by providing its business format or package to franchisee of host country. International franchising is growing fast for last four decades but academic research on this is quite limited. Especially in Korea, research about international franchising is carried out on by case study format with single case or empirical study format with survey based on domestic franchise theory. Therefore, this paper tries to review existing literature on international franchising research, providing research framework, and then stimulating new research on this field. International franchising research components include motives and environmental factors for decision of expanding to international franchising, entrance modes and development plan for international franchising, contracts and management strategy of international franchising, and various performance measures from different perspectives. First, motives of international franchising are fee collection from franchisee. Also it provides easier way to expanding to foreign country. The other motives including increase total sales volume, occupying better strategic position, getting quality resources, and improving efficiency. Environmental factors that facilitating international franchising encompasses economic condition, trend, and legal or political factors in host and/or home countries. In addition, control power and risk management capability of franchisor plays critical role in successful franchising contract. Final decision to enter foreign country via franchising is determined by numerous factors like history, size, growth, competitiveness, management system, bonding capability, industry characteristics of franchisor. After deciding to enter into foreign country, franchisor needs to set entrance modes of international franchising. Within contractual mode, there are master franchising and area developing franchising, licensing, direct franchising, and joint venture. Theories about entrance mode selection contain concepts of efficiency, knowledge-based approach, competence-based approach, agent theory, and governance cost. The next step after entrance decision is operation strategy. Operation strategy starts with selecting a target city and a target country for franchising. In order to finding, screening targets, franchisor needs to collect information about candidates. Critical information includes brand patent, commercial laws, regulations, market conditions, country risk, and industry analysis. After selecting a target city in target country, franchisor needs to select franchisee, in other word, partner. The first important criteria for selecting partners are financial credibility and capability, possession of real estate. And cultural similarity and knowledge about franchisor and/or home country are also recognized as critical criteria. The most important element in operating strategy is legal document between franchisor and franchisee with home and host countries. Terms and conditions in legal documents give objective information about characteristics of franchising agreement for academic research. Legal documents have definitions of terminology, territory and exclusivity, agreement of term, initial fee, continuing fees, clearing currency, and rights about sub-franchising. Also, legal documents could have terms about softer elements like training program and operation manual. And harder elements like law competent court and terms of expiration. Next element in operating strategy is about product and service. Especially for business format franchising, product/service deliverable, benefit communicators, system identifiers (architectural features), and format facilitators are listed for product/service strategic elements. Another important decision on product/service is standardization vs. customization. The rationale behind standardization is cost reduction, efficiency, consistency, image congruence, brand awareness, and competitiveness on price. Also standardization enables large scale R&D and innovative change in management style. Another element in operating strategy is control management. The simple way to control franchise contract is relying on legal terms, contractual control system. There are other control systems, administrative control system and ethical control system. Contractual control system is a coercive source of power, but franchisor usually doesn't want to use legal power since it doesn't help to build up positive relationship. Instead, self-regulation is widely used. Administrative control system uses control mechanism from ordinary work relationship. Its main component is supporting activities to franchisee and communication method. For example, franchisor provides advertising, training, manual, and delivery, then franchisee follows franchisor's direction. Another component is building franchisor's brand power. The last research element is performance factor of international franchising. Performance elements can be divided into franchisor's performance and franchisee's performance. The conceptual performance measures of franchisor are simple but not easy to obtain objectively. They are profit, sale, cost, experience, and brand power. The performance measures of franchisee are mostly about benefits of host country. They contain small business development, promotion of employment, introduction of new business model, and level up technology status. There are indirect benefits, like increase of tax, refinement of corporate citizenship, regional economic clustering, and improvement of international balance. In addition to those, host country gets socio-cultural change other than economic effects. It includes demographic change, social trend, customer value change, social communication, and social globalization. Sometimes it is called as westernization or McDonaldization of society. In addition, the paper reviews on theories that have been frequently applied to international franchising research, such as agent theory, resource-based view, transaction cost theory, organizational learning theory, and international expansion theories. Resource based theory is used in strategic decision based on resources, like decision about entrance and cooperation depending on resources of franchisee and franchisor. Transaction cost theory can be applied in determination of mutual trust or satisfaction of franchising players. Agent theory tries to explain strategic decision for reducing problem caused by utilizing agent, for example research on control system in franchising agreements. Organizational Learning theory is relatively new in franchising research. It assumes organization tries to maximize performance and learning of organization. In addition, Internalization theory advocates strategic decision of direct investment for removing inefficiency of market transaction and is applied in research on terms of contract. And oligopolistic competition theory is used to explain various entry modes for international expansion. Competency theory support strategic decision of utilizing key competitive advantage. Furthermore, research methodologies including qualitative and quantitative methodologies are suggested for more rigorous international franchising research. Quantitative research needs more real data other than survey data which is usually respondent's judgment. In order to verify theory more rigorously, research based on real data is essential. However, real quantitative data is quite hard to get. The qualitative research other than single case study is also highly recommended. Since international franchising has limited number of applications, scientific research based on grounded theory and ethnography study can be used. Scientific case study is differentiated with single case study on its data collection method and analysis method. The key concept is triangulation in measurement, logical coding and comparison. Finally, it provides overall research direction for international franchising after summarizing research trend in Korea. International franchising research in Korea has two different types, one is for studying Korean franchisor going overseas and the other is for Korean franchisee of foreign franchisor. Among research on Korean franchisor, two common patterns are observed. First of all, they usually deal with success story of one franchisor. The other common pattern is that they focus on same industry and country. Therefore, international franchise research needs to extend their focus to broader subjects with scientific research methodology as well as development of new theory.

  • PDF