• Title/Summary/Keyword: number systems

Search Result 10,372, Processing Time 0.042 seconds

Determination of Number of AGVs in Multi-Path Systems By Using Genetic Algorithm (GA를 이용한 다중경로의 시스템의 AGV 대수 결정 문제)

  • Kim, Hwan-Seong;Lee, Sang-Hun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.4
    • /
    • pp.319-325
    • /
    • 2001
  • Recently. AGV systems are used to serve the raw material to each work stations automatically. There exists a trade-off between the adequate service supply and the number of purchased AGVs. Also, to reduce the overall production cost, the amount of inventory hold on the shop floor should be considered. In this paper, we present a heuristic technique for determining the number of AGVs which includes the net present fixed costs of each station, each purchased AGV, delivering cost, stock inventory cost, and safety stock inventory cost. Secondly, by using a genetic algorithm, the optimal number of AGVs and the optimal reorder quantity at each station are decided. Lastly, to verify then heuristic algorithm, we have done a computer simulation with different GA parameters.

  • PDF

Optimal Number of Users in Zero-Forcing Based Multiuser MIMO Systems with Large Number of Antennas

  • Jung, Minchae;Kim, Younsun;Lee, Juho;Choi, Sooyong
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.362-369
    • /
    • 2013
  • The optimal number of users achieving the maximum sum throughput is analyzed in zero-forcing (ZF) based multiuser multiple-input multiple-output (MIMO) systems with a large number of base station (BS) antennas. By utilizing deterministic ergodic sum rates for the ZF-beam forming (ZF-BF) and ZF-receiver (ZF-R) with a large number of BS antennas [1], [2], we can obtain the ergodic sum throughputs for the ZF-BF and ZF-R for the uplink and downlink frame structures, respectively. Then, we can also formulate and solve the optimization problems maximizing the ergodic sum throughputs with respect to the number of users. This paper shows that the approximate downlink sum throughput for the ZF-BF is a concave function and the approximate uplink sum throughput for the ZF-R is also a concave function in a feasible range with respect to the number of users. The simulation results verify the analyses and show that the derived numbers of users provide the maximum sum throughputs for the ZF-BF as well as ZF-R in multiuser MIMO systems with a large number of BS antennas.

Suitable Use of Capillary Number for Analysis of NAPL Removal from Porous Media

  • Jeong, Seung-Woo,
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.25-28
    • /
    • 2004
  • The capillary number is used to represent the mobilization potential of organic phase trapped within porous media. The capillary number has been defined by three different forms, according to types of flow velocity and viscosity used in the definition of capillary number. This study evaluated the suitability of the capillary number definitions for representing TCE mobilization by constructing capillary number-TCE saturation relationships. The results implied that the capillary number should be correctly employed, according to interest of scale and fluid flow behavior. This study suggests that the pore-scale capillary number may be used only for investigating the organic-phase mobilization at the pore scale because it is defined by the pore-velocity and the dynamic viscosity. The Newtonian-fluid capillary number using Darcy velocity and the dynamic viscosity may be suitable to quantify flood systems representing Newtonian fluid behavior. For viscous-force modified flood systems such as surfactant-foam floods, the apparent capillary number definition employing macroscopic properties (permeability and potential gradient) may be used to appropriately represent the desaturation of organic-phases from porous media.

  • PDF

Downlink Transmit Power Allocation in Soft Fractional Frequency Reuse Systems

  • Kim, Dong-Hee;Ahn, Jae-Young;Kim, Ho-Joon
    • ETRI Journal
    • /
    • v.33 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • Downlink transmit power allocation schemes are proposed for soft fractional frequency reuse (FFR) in loose and tightly coordinated systems. The transmit powers are allocated so that the loss of spectral efficiency from the soft FFR is minimized, and the required cell edge user throughput is guaranteed. The effect of the soft FFR on spectral efficiency is evaluated depending on the power allocation schemes and the number of subbands. Results show that the loss of spectral efficiency from the soft FFR can be reduced by configuring an appropriate number of subbands in the loosely coordinated systems. In tightly coordinated systems, results show that the loss of spectral efficiency can be minimized regardless of the number of subbands due to its fast coordination.

Adaptive Observer using Auto-generating B-splines

  • Baang, Dane;Stoev, Julian;Choi, Jin-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.479-491
    • /
    • 2007
  • This paper presents a new adaptive observer design method for a class of uncertain nonlinear systems by using spline approximation. This scheme leads to a simplified observer structure which requires only fixed number of integrations, regardless of the number of parameters to be estimated. This benefit can reduce the number of integrations of the observer filter dramatically. Moreover, the proposed adaptive observer automatically generates the required spline elements according to the varying output value and, as a result, does not requires the pre-knowledge of upper and lower bounds of the output. This is another benefit of our approach since the requirement for known output bounds have been one of the main drawbacks of practical universal approximation problems. Both of the benefits stem from the local support property, which is specific to splines.

Electronic Commerce Navigation Agent Model using Conditional Probability and Fuzzy Number (조건부 확률과 퍼지수를 이용한 전자상거래 검색 에이전트 모델)

  • 김명순;원성현;정환묵
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.219-223
    • /
    • 2001
  • In this paper, we proposed the intelligent navigation agent model for successive electronic commerce management. For allowing intelligence, we used conditional probability and trapezoidal fuzzy number. Our goal of study is make an intelligent automatic navigation agent model.

  • PDF

Random Number Statistical Test Using fuzzy Set Operation

  • Sung-joo;Park, Jin-suk
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.41-45
    • /
    • 2002
  • From the paper which it sees a strong random number generator it uses a fuzzy set from 16 method of the statistical test which is a cryptograph random number test it verifies. 16 statistical test of NIST extends in crptograph and engineering whole it is a scale which is important distinguishes the distinction incapable characterstic of the random numbers which are used. To try introduce a fuzzy set the possibility of having a more strong randomness in order to be, it strengthens the function of the random number generator.

A Checkpointing Framework for Dependable Real-Time Systems (고신뢰 실시간 시스템을 위한 체크포인팅 프레임워크)

  • Lee, Hyo-Soon;Shin, Heonshik-Sin
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.4
    • /
    • pp.176-184
    • /
    • 2002
  • We provide a checkpointing framework reflecting both the timeliness and the dependability in order to make checkpointing applicable to dependable real-time systems. The predictability of real-time tasks with checkpointing is guaranteed by the worst case execution time (WCET) based on the allocated number of checkpoints and the permissible number of failures. The permissible number of failures is derived from fault tolerance requirements, thus guaranteeing the dependability of tasks. Using the WCET and the permissible number of failures of tasks, we develop an algorithm that determines the minimum number of checkpoints allocated to each task in order to guarantee the schedulability of a task set. Since the framework is based on the amount of time redundancy caused by checkpointing, it can be extended to other time redundancy techniques.

A New Dynamic Routing Algorithm for Multiple AGV Systems : Nonstop Preferential Detour Algorithm (다중무인운반차 시스템의 새로운 동적경로계획 알고리즘 : 비정지우선 우회 알고리즘)

  • Sin, Seong-Yeong;Jo, Gwang-Hyeon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.9
    • /
    • pp.795-802
    • /
    • 2002
  • We present a new dynamic routing scheme for multiple autonomous guided vehicles (AGVs) systems. There have been so many results concerned with scheduling and routing of multiple AGV systems; however, most of them are only applicable to systems with a small number of AGVs under a low degree of concurrency. With an increased number of AGVs in recent applications, these AGV systems are faced with another problem that has never been occurred in a system with a small number AGVs. This is the stop propagation problem. That is, if a leading AGV stops then all the following AGVs must stop to avoid any collision. In order to resolve this problem, we propose a nonstop preferential detour (NPD) algorithm which is a new dynamic routing scheme employing an election algorithm. For real time computation, we introduce two stage control scheme and propose a new path searching scheme, k-via shortest path scheme for an efficient dynamic routing algorithm. Finally, the proposed new dynamic routing scheme is illustrated by an example.

A Distance-Based Simulated Annealing Algorithm for the determination of the Number and the Location of Centralized Warehouses (중앙창고의 수와 위치 결정을 위한 거리 기반 Simulated Annealing 앨고리듬)

  • Lee, Dong-Ju;Kim, Jin-Ho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.30 no.3
    • /
    • pp.44-53
    • /
    • 2007
  • Forming central warehouses for a number of stores can save costs in the continuous review inventory model due to economy of scale and information sharing. In this paper, transportation costs are included in this inventory model. Hence, the tradeoff between inventory-related costs and transportation costs is required. The main concern of this paper is to determine the number and location of central warehouses. Transportation costs are dependent on the distance from several central warehouses to each store. Hence, we develop an efficient simulated annealing algorithm using distance-based local search heuristic and merging heuristic to determine the location and the number of central warehouses. The objective of this paper is to minimize total costs such as holding, setup, penalty, and transportation costs. The performance of the proposed approach is tested by using some computational experiments.