• Title/Summary/Keyword: number of storm events

Search Result 38, Processing Time 0.024 seconds

Effect of Building Generalization in a Lattice Cell Form on the Spatial Connectivity of Overland Storm Waterways in an Urban Residential Area (격자형 건물 일반화가 도시 주거지 빗물 유출경로의 연속성에 미치는 영향)

  • JEON, Ka-Young;HA, Sung-Ryong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.1
    • /
    • pp.137-151
    • /
    • 2017
  • The space between urban buildings becomes a waterway during rain events and requires a boundary condition in numerical calculations on grids to separate overland storm flows from building areas. Minimization of the building data distortion as a boundary condition is a necessary step for generating accurate calculation results. A building generalization is used to reduce the distortion of building shapes and areas during a raster conversion. The objective of this study was to provide the appropriate threshold value for building generalization and grid size in a numerical calculation. The impact of building generation on the connectivity of urban storm waterways were analyzed for a general residential area. The building generalization threshold value and the grid size for numerical analysis were selected as the independent variables for analysis, and the number and area of sinks were used as the dependent variables. The values for the building generalization threshold and grid size were taken as the optimal values to maximize the building area and minimize the sink area. With a 3 m generalization threshold, sets of $5{\times}5m$ to $10{\times}10m$ caused 5% less building area and 94.4% more sink area compared to the original values. Two sites representing general residential area types 2 and 3 were used to verify building generalization thresholds for improving the connectivity of storm waterways. It is clear that the recommended values are effective for reducing the distortion in both building and sink areas.

Estimating on the Erosion and Retreat Rates of Sea-cliff Slope Using the Datum-point in Pado-ri, the Western Coast of Korea (침식기준목을 이용한 파도리 해식애 사면의 침식·후퇴율 산정)

  • JANG, Dong-Ho;PARK, Ji-Hoon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.3
    • /
    • pp.71-82
    • /
    • 2012
  • This research was carried out to estimate annual erosion and retreat rates by using datum-point and to identify the characteristics and causes of seasonal variations of sea-cliff slope in Pado-ri, Taean-gun. In the result, the erosion and retreat rates of sea-cliff were increased from spring to summer. The rates were increased rapidly between August and October, caused by the effects of extreme weather events such as severe rainstorms and typhoons, etc. Since then, the erosion and retreat rates of sea-cliff were decreased gradually, but the rates were increased again in winter due to the storm surge and mechanical weathering resulting from the repeated freezing and thawing actions of bed rocks. The factors that affect erosion and retreat rates of sea-cliff include the number of days with antecedent participation and daily maximum wave height. In particular, it turned out that the erosion is accelerated by strong wave energy during storm surges and typhoons. The annual erosion and retreat rates of study area for the past two years(from May 2010 to May 2012) were approximately 44~60cm/yr in condition of differences in geomorphological and geological characteristics at each point. These erosion and retreat rates were found to be higher than results of previous researches. This is caused by coastal erosion forces strengthened by extreme weather events. The erosion and retreat process of sea-cliff in the study area is composed by denudation of onshore areas in addition to marine erosion(wave energy).

Estimating Quantiles of Extreme Rainfall Using a Mixed Gumbel Distribution Model (혼합 검벨분포모형을 이용한 확률강우량의 산정)

  • Yoon, Phil-Yong;Kim, Tae-Woong;Yang, Jeong-Seok;Lee, Seung-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.3
    • /
    • pp.263-274
    • /
    • 2012
  • Recently, due to various climate variabilities, extreme rainfall events have been occurring all over the world. Extreme rainfall events in Korea mainly result from the summer typhoon storms and the localized convective storms. In order to estimate appropriate quantiles for extreme rainfall, this study considered the probability behavior of daily rainfall from the typhoons and the convective storms which compose the annual maximum rainfalls (AMRs). The conventional rainfall frequency analysis estimates rainfall quantiles based on the assumption that the AMRs are extracted from an identified single population, whereas this study employed a mixed distribution function to incorporate the different statistical characteristics of two types of rainfalls into the hydrologic frequency analysis. Selecting 15 rainfall gauge stations where contain comparatively large number of measurements of daily rainfall, for various return periods, quantiles of daily rainfalls were estimated and analyzed in this study. The results indicate that the mixed Gumbel distribution locally results in significant gains and losses in quantiles. This would provide useful information in designing flood protection systems.

Characteristic Analysis of the Coefficient of Initial Abstraction and Development of its Formular in the Rural Watersheds - for the Small-Medium Watersheds in the Geum and Sapkyo River - (농촌유역에서의 초기강우손실 특성분석과 계수 산정식 개발 - 금강.삽교천 중소유역을 중심으로-)

  • Kim, Tai-Cheol;Lee, Jeong-Seon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.6
    • /
    • pp.3-12
    • /
    • 2008
  • It is important to estimate accurate effective rainfall to analyse flood flow and long-term runoff for the rational planning, design, and management of water resource. The initial abstraction is also important to estimate effective rainfall. The Soil Conservation Service (SCS) has developed a procedure and it has been most commonly applied to estimate effective rainfall. But the SCS method still has weak points, because of unnatural assumptions such as antecedent moisture conditions and initial abstraction. The coefficient of initial abstraction(K) is depending on the soil moisture condition and antecedent rainfall. The maximum storage capacity of Umax which is calibrated by stream flow data in the proposed watershed was derived from the DAWAST(DAily WAtershed STreamflow) model. The values of K obtained from 69 storm events at the five watersheds are ranging from 0.133 to 0.365 and its mean value is 0.207. Effective rainfall could be estimated more reasonably by introducing new concept of initial abstraction. The equation of $K=0.076Sa^{0.255}$ was recommended instead of 0.2 and it could be applicable to the small-medium rural watersheds.

Comparison of Hourly and Daily SWAT Results for the Evaluation of Runoff Simulation Performance (SWAT모형의 시단위 및 일단위 유출 모의성능 비교)

  • Jang, Sun Sook;Kim, Seong Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.5
    • /
    • pp.59-69
    • /
    • 2016
  • This study aims to evaluate the Soil and Water Assessment Tool (SWAT) hourly hydrological modeling performance and compare it with daily SWAT modeling parameters. For the Byeolmicheon catchment ($1.17km^2$) located in the upstream of Gyeongancheon watershed and total 18 storm events measured during 3 years (2011-2013), the hourly SWAT was calibrated and validated using the Green and Ampt (G&A) infiltration equation. The determination coefficient ($R^2$) and Nash-Sutcliffe model efficiency (NSE) of hourly SWAT discharge were 0.81 and 0.73 respectively, and the most sensitive parameter was soil saturated hydraulic conductivity (SOL_K) and calibrated with the average value of 0.075 mm/hr. In addition, the hourly SWAT simulation by G&A was compared with the daily SWAT simulation by SCS-CN (Soil Conservation Service-Curve Number) method for the whole 3 years period. The houlrly G&A results showed $R^2$ and NSE of 0.71 and 0.50, and the daily SCS-CN results were 0.71 and 0.66, respectively. The SOL_K by daily SCS_CN method was calibrated at 75.5 mm/hr, 1,000 times greater than the hourly G&A method. The next sensitive parameters for the hourly simulation were lag time of lateral flow (LAT_TIME) and lag time of surface runoff (SURLAG).

A Study on the calculation of Effective Rainfall by the SCS Method Using a Triangular Irregular Network (TIN을 이용한 SCS법에 의한 유효강우량 산정에 관한 연구)

  • Jo, Hong-Je;Kim, Jeong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.4
    • /
    • pp.357-366
    • /
    • 1997
  • This paper presents a methodology for the calculation of effective rainfall by the SCS method using 3-dimensional digital elevation map and a Triangular Irregular Network module. The effective rainfall is calculated by taking into the increases of the runoff curve number(2%, 3%) due to the 10% increases of the slope of hillside, and the result indicate that the effective rainfall varies 5.0%∼12.0% with the storm events. It is demonstrated that in case of using the SCS method for the calculation of effective rainfall in the mountainous watershed with great elevation difference, the methodology taking into the slope of hillside is more viable.

  • PDF

Land Cover Classification and Effective Rainfall Mapping using Landsat TM Data (Landsat TM 자료를 이용한 토지피복분류와 유효우량도의 작성)

  • Shin, Sha-Chul;Kwon, Gi-Ryang;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.4 s.129
    • /
    • pp.411-423
    • /
    • 2002
  • Accurate and real time forecasting of runoff has a high priority in the drainage basins prone to short, high intensity rainfall events causing flash floods. To take into account the resolution of hydrological variables within a drainage basin, use of distributed system models is preferred. The Landsat Thematic Mapper(TM) observations enable detailed information on distribution of land cover and other related factors within a drainage basin and permit the use of distributed system models. This paper describes monitoring technique of rainfall excess by SCS curve number method. The time series maps of rainfall excess were generated for all the storm events to show the spatiotemporal distribution of rainfall excess within study basin. A combination of the time series maps of rainfall excess with a flow routing technique would simulate the flow hydrograph at the drainage basin outlet.

Distributed GIS-Based Watershed Rainfall-Runoff Model Development and Its Calibration using Weather Radar (기상레이더와 지형정보시스템을 이용한 분포형 강우-유출 유역모형의 개발과 검정)

  • Skahill, Brian E.;Choi, Woo-Hee;Kim, Min-Hwan;Kim, Sung-Kyun;Johnson, Lynn E.
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.2
    • /
    • pp.285-300
    • /
    • 2003
  • An event-based, kinematic, infiltration-excess, and distributed rainfall-runoff model using weather radar and Geographic Information System(GIS) was developed to acknowledge and account lot the spatial variability and uncertainty of several parameters relevant to storm surface runoff and surface flow The developed model is compatible with raster GIS and spatially and temporally varied rainfall data. To calibrate the model, Monte Carlo simulation and a likelihood measure are utilized; allowing for a range of possible system responses from the calibrated model. Using rain gauge adjusted radar-rainfall estimates, the developed model was applied and evaluated to a limited number of historical events for the Ralston Creek and Goldsmith Gulch basins within the Denver Urban Drainage and Flood Control District (UDFCD) that contain mixed land use classifications. While based on a limited number of Monte Carlo simulations and considered flood events, Nash and Sutcliffe efficiency score ranges of -0.19∼0.95 / -0.75∼0.81 were obtained from the calibrated models for the Ralston Creek and Goldsmith Gulch basins, based on a comparison of observed and simulated hydrographs. For the Ralston Creek and Goldsmith Gulch basins, Nash and Sutcliffe efficiency scores of 0.88/0.10, 0.14/0.71, and 0.99/0.95 for runoff volume, peak discharge, and time to peak, respectively, were obtained from the model.

Assessment of Water Distribution and Irrigation Efficiency in Agricultural Reservoirs using SWMM Model (SWMM 모형을 이용한 농업용 저수지 용수분배 모의 및 관개효율 평가)

  • Shin, Ji-Hyeon;Nam, Won-Ho;Bang, Na-Kyoung;Kim, Han-Joong;An, Hyun-Uk;Do, Jong-Won;Lee, Kwang-Ya
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.3
    • /
    • pp.1-13
    • /
    • 2020
  • The management of agricultural water can be divided into management of agricultural infrastructure and operation to determine the timing and quantity of water supply. The target of water management is classified as water-supply facilities, such as reservoirs, irrigation water supply, sluice gate control, and farmland. In the case of agricultural drought, there is a need for water supply capacity in reservoirs and for drought assessment in paddy fields that receive water from reservoirs. Therefore, it is necessary to analyze the water supply amount from intake capacity to irrigation canal network. The analysis of the irrigation canal network should be considered for efficient operation and planning concerning optimized irrigation and water allocation. In this study, we applied a hydraulic analysis model for agricultural irrigation networks by adding the functions of irrigation canal network analysis using the SWMM (Storm Water Management Model) module and actual irrigation water supply log data from May to August during 2015-2019 years in Sinsong reservoir. The irrigation satisfaction of ponding depth in paddy fields was analyzed through the ratio of the number of days the target ponding depth was reached for each fields. This hydraulic model can assist with accurate irrigation scheduling based on its simulation results. The results of evaluating the irrigation efficiency of water supply can be used for efficient water distribution and management during the drought events.

Characteristics of Changes in Water Quality in the Suyoung River During Rainfall Event (강우 시 수영강 유역의 수질변화 특성)

  • Kim, Suhyun;Kim, Jungsun;Kang, Limseok
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.1
    • /
    • pp.9-18
    • /
    • 2019
  • Recently, it was realized that a significant portion of pollution from urban areas originates from non-point sources such as construction sites, washoff from impervious surfaces, and sewage input from unsewered areas and combined sewer overflows. Especially, Urban stormwater runoff is one of the most extensive cause of the deterioration of the water quality in streams located in urban area. The objective of this study was to investigate runoff characteristics of non-point pollutants source at the urban area in the Suyeong River. Water quality variations were investigated at two points of Suyeong River during a period of 10 rainfall events. Concentration difference of non-point pollution source appeared big by precedent number of days of no rainfall. In addition, Event mean Concentration (EMCs) that well represents runoff characteristics of storm water during rainfall, was calculated, and runoff pollutants loading was also examined. The probability distribution of EMCs of BOD, COD, TOC, T-N, T-P, and TSS were analyzed and the mean values of observed EMC and the median values of estimated EMCs compared through probability distribution. Other objectives of this study were the characterization of discharge from non-point source, the analysis of the pollutant loads and an establishment of a management plan for non-point source of Suyeong River. Also, It was established that the most important thing for the administration of non-point pollution source is to come up with the solution for the reduction of effluent at the beginning.