• 제목/요약/키워드: number average particle size

검색결과 87건 처리시간 0.027초

관내 입자 재응집에 의한 케이크 저항의 감소 (Reduction of Cake Resistance by Floc Reaggregation in a Membrane-Feed-Pipe)

  • 김태영;박희경
    • 상하수도학회지
    • /
    • 제21권6호
    • /
    • pp.717-726
    • /
    • 2007
  • Fully-grown flocs in a mixing tank of membrane filtration with dead-end membrane are ruptured while passing through a pump and the ruptured flocs are aggregated again in a Membrane-Feed-Pipe (MFP). To look at more details, this study tries to relate the reaggregation to a parameter of mixing intensity in MFP, i.e., G-value. The G-value is a function of Reynolds number, pipe diameter, friction factor and average velocity in MFP. To deal with polydispersity condition, we develop a representative particle size called in this study EDPD (Effective Diameter for Polydispersity condition in Dead-end filtration). The experimental results show that as the G-value increases, the EDPD decreases and also the cake resistance increases. Through comparison between EDPD and cake resistance, these results show that cake resistances are controlled by reaggregation phenomenon in MFP. The effect of detention time in MFP, however, does not affect the reaggregation of the broken flocs as G-values are increased.

The Critical Pigment Volume Concentration Concept for Paper Coatings: I. Model Coating Systems Using Plastic Pigments and Latex Binders for Paper Coating Applications

  • Lee, Do-Ik
    • 펄프종이기술
    • /
    • 제34권5호
    • /
    • pp.1-17
    • /
    • 2002
  • The immobilization and consolidation of the model coatings based on the plastic pigment and latex binder of known particle sizes were theoretically Studied in terms of the dense random packing of binary spheres and varying extent of latex film shrinkage. The porosity of the model coatings was calculated based on three proposed latex shrinkage models: Maximum, Minimum, and Linearly Decreasing Latex Shrinkage. The increasing extent of latex shrinkage was calculated up to the critical pigment volume concentration(CPVC) as a function of plastic pigment volume fractions, and the maximum latex shrinkage was estimated from the CPVC. Also, the number of pores and the average equivalent spherical pore diameters were calculated based on those proposed models. The opacity and gloss of the model coatings on polyester films were measured and their porosity was also determined by a simple coat weight-thickness method. As expected, various coating structure-property-composition relationships, such as opacity, gloss, porosity, etc., were shown to exhibit sharp transitions near the CPVC. The CPVC values determined by the opacity, gloss, and porosity vs. PVC relationships, respectively, agreed very well with each other. Especially, the CPVC's determined by the opacity and porosity vs. PVC curves were identical. The comparison between the theoretically calculated and experimental porosity values showed that the intermediate value between the maximum and minimum latex shrinkage would best fit the experimental porosity data. The effect of plastic pigment particle size on the optical properties and porosity of model coatings was also studied and it was observed that the coating opacity and porosity increased with increasing plastic pigment particle size, but the gloss decreased. The ink gloss of the uncalendered model coatings applied onto commercial sheet offset coated papers was shown to be affected by both the coating gloss and porosity: the higher the coating gloss, the higher the ink gloss, but the higher the coating porosity, the lower the ink gloss. Their printability was also studied in terms of the number of passes-to-fail and the rate of ink setting as a function of both plastic pigment volume fractions and plastic pigment particle sizes. A minimum crack-free temperature(MCR) of latex-bound coatings was proposed to better predict the behaviors of latexes as coating binders. The wet state of model coating dispersions, the surfaces of consolidated model coatings, and their internal structure were examined by both electron and atomic force microscopy, and their micrographs were found to be consistent with our immobilization and consolidation models.

흡입독성평가를 위한 비부노출 챔버의 유동흐름 특성 (Characteristics of flow field of nose-only exposure chamber for inhalation toxicity evaluation)

  • 노학재;봉춘근;봉하경;김용구;조명행;김상화;김대성
    • 한국입자에어로졸학회지
    • /
    • 제12권1호
    • /
    • pp.1-9
    • /
    • 2016
  • In this work, we evaluated the characteristics of flow field and uniformity of the nose-only exposure chambers for the inhalation toxicity test. Computational fluid dynamics (CFD) modeling was carried out to demonstrate uniformity of the nose-only exposure chambers. Because it is very important in the inhalation toxicity experiments that test materials are distributed uniformly to each holder of the chamber. The test was done with these 3 types of chamber with different form to develop inhalation toxicity evaluation system, easy-to-operate system among exposure chamber used for evaluating inhalation toxicity of environmental chemical mixtures. Through CFD interpretation, nose-only exposure chamber was made with the selection of the optimal conditions. For its evaluation, one type of fragrance was selected and measured particle size distribution of each port. The gene becoming luminous to green fluorescence was combined with GPT-SPE, a type of tGFP vector, to be inhaled to the mouse. Based on this, luminous intensity was checked. As a result, total particle number concentration of each port had average value of $3.17{\times}10^6{\sharp}/cm^3$ and range of the highest and lowest concentration value was approximately ${\pm}4.8%$. Autopsy of lung tissues of mouse showed that it had clearly better delivery of gene compared to the control group.

인산 에스테르 반응 셀룰로오스 미립자의 활성화가 비수계 ER 유체의 전기유변학적 특성에 미치는 영향 (The Effect of the Activation of Phosphoric Ester Cellulose Particles on the Electrotheological Properties of Anhydrous ER Fluids)

  • 안병길;최웅수;권오관;문탁진
    • Tribology and Lubricants
    • /
    • 제14권3호
    • /
    • pp.7-16
    • /
    • 1998
  • The electrorheological (ER) behavior of suspensions in silicone oil of phosphoric ester cellulose powder (average particle size: 17.77 $\mu$m) was investigated at room temperature with electric fields up to 2.5 KV/mm. For development of anhydrous ER suspensions using at wide temperature range, we aimed to know the effect of activation of phosphoric ester cellulose particles on the ER activities. As a first step, the anhydrous ER suspensions mixing with the phosphoric ester cellulose particles which were treated with 2M phosporic acid and 4M urea were measured. After activating the anhydrous ER suspensions at 12$0^{\circ}C$, not only the analysis of dispersing cellulose particles which were reacted by phosphoric ester but also the electrorheological characteristics of ER suspensions such as dielectric constant, current density, electrical conductivity and rheological properties were studied. From the experimental results, the activation of phosphoric ester cellulose particles had an influence on the ER properties of anhydrous ER suspensions. As the activation time went by, the size and number of dispersing particles, the electrical properties and the initial apparent viscosity $(η_0)$ of ER suspensions were increased till the activation time passed 5 hours. Also, it was possible, the electrorheological effect $($\tau$/$\tau$_0)$ of ER fluids was grown by the activation of phosphoric ester cellulose particles.

Inconsistency in the Average Hydraulic Models Used in Nuclear Reactor Design and Safety Analysis

  • Park, Jee-Won;Roh, Gyu-Hong;Park, Hangbok
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 추계학술발표회논문집(1)
    • /
    • pp.599-604
    • /
    • 1997
  • One of important inconsistencies in the six-equation model predictions has been found to be the force experienced by a single bubble placed in a convergent stream of liquid. Various sets of governing equations yield different amount of forces to hold the bubble stationary in a convergent nozzle. By using the first order potential flow theory, it is found that the six-equation model can not be used to estimate the force experienced by a deformed bubble. The theoretical value of the particle stress of a bubble in a convergent nozzle flow has been found to be a function of the Weber number when bubble distortion is allowed. This force has been calculated by using different sets of governing equations and compared with the theoretical value. It is suggested in this study that the bubble size distribution function can be used to remove the presented inconsistency by relating the interfacial variables with different moments of the bubble size distribution function. This study also shows that the inconsistencies in the thermal-hydraulic governing equation can be removed by mechanistic modeling of the phasic interface.

  • PDF

Effects of Neutral Particle Beam on Nano-Crystalline Silicon Thin Film Deposited by Using Neutral Beam Assisted Chemical Vapor Deposition at Room Temperature

  • Lee, Dong-Hyeok;Jang, Jin-Nyoung;So, Hyun-Wook;Yoo, Suk-Jae;Lee, Bon-Ju;Hong, Mun-Pyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.254-255
    • /
    • 2012
  • Interest in nano-crystalline silicon (nc-Si) thin films has been growing because of their favorable processing conditions for certain electronic devices. In particular, there has been an increase in the use of nc-Si thin films in photovoltaics for large solar cell panels and in thin film transistors for large flat panel displays. One of the most important material properties for these device applications is the macroscopic charge-carrier mobility. Hydrogenated amorphous silicon (a-Si:H) or nc-Si is a basic material in thin film transistors (TFTs). However, a-Si:H based devices have low carrier mobility and bias instability due to their metastable properties. The large number of trap sites and incomplete hydrogen passivation of a-Si:H film produce limited carrier transport. The basic electrical properties, including the carrier mobility and stability, of nc-Si TFTs might be superior to those of a-Si:H thin film. However, typical nc-Si thin films tend to have mobilities similar to a-Si films, although changes in the processing conditions can enhance the mobility. In polycrystalline silicon (poly-Si) thin films, the performance of the devices is strongly influenced by the boundaries between neighboring crystalline grains. These grain boundaries limit the conductance of macroscopic regions comprised of multiple grains. In much of the work on poly-Si thin films, it was shown that the performance of TFTs was largely determined by the number and location of the grain boundaries within the channel. Hence, efforts were made to reduce the total number of grain boundaries by increasing the average grain size. However, even a small number of grain boundaries can significantly reduce the macroscopic charge carrier mobility. The nano-crystalline or polymorphous-Si development for TFT and solar cells have been employed to compensate for disadvantage inherent to a-Si and micro-crystalline silicon (${\mu}$-Si). Recently, a novel process for deposition of nano-crystralline silicon (nc-Si) thin films at room temperature was developed using neutral beam assisted chemical vapor deposition (NBaCVD) with a neutral particle beam (NPB) source, which controls the energy of incident neutral particles in the range of 1~300 eV in order to enhance the atomic activation and crystalline of thin films at room temperature. In previous our experiments, we verified favorable properties of nc-Si thin films for certain electronic devices. During the formation of the nc-Si thin films by the NBaCVD with various process conditions, NPB energy directly controlled by the reflector bias and effectively increased crystal fraction (~80%) by uniformly distributed nc grains with 3~10 nm size. The more resent work on nc-Si thin film transistors (TFT) was done. We identified the performance of nc-Si TFT active channeal layers. The dependence of the performance of nc-Si TFT on the primary process parameters is explored. Raman, FT-IR and transmission electron microscope (TEM) were used to study the microstructures and the crystalline volume fraction of nc-Si films. The electric properties were investigated on Cr/SiO2/nc-Si metal-oxide-semiconductor (MOS) capacitors.

  • PDF

High Time-resolution Characterization of PM2.5 Sulfate Measured in a Japanese Urban Site

  • Ma, Chang-Jin;Kang, Gong-Unn;Kim, Ki-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • 제9권4호
    • /
    • pp.280-287
    • /
    • 2015
  • The high time-resolution monitoring data are essential to estimate rapid changes in chemical compositions, concentrations, formation mechanisms, and likely sources of atmospheric particulate matter (PM). In this study, $PM_{2.5}$ sulfate, $PM_{2.5}$, $PM_{10}$, and the number concentration of size-resolved PMs were monitored in Fukuoka, Japan by good time-resolved methods during the springtime. The highest monthly average $PM_{2.5}$ sulfate was found in May ($8.85{\mu}g\;m^{-3}$), followed by April ($8.36{\mu}g\;m^{-3}$), March ($8.13{\mu}g\;m^{-3}$), and June ($7.22{\mu}g\;m^{-3}$). The cases exceed the Japanese central government's safety standard for $PM_{2.5}$ ($35{\mu}g\;m^{-3}$) reached 10.11% during four months campaign. The fraction of $PM_{2.5}$ sulfate to $PM_{2.5}$ varied from 12.05% to 68.11% with average value of 35.49% throughout the entire period of monitoring. This high proportion of sulfate in $PM_{2.5}$ is an obvious characteristic of the ambient $PM_{2.5}$ in Fukuoka during the springtime. However, the average fraction of $PM_{2.5}$ sulfate to $PM_{2.5}$ in three rain events occurred during our intensive campaign fell right down to 15.53%. Unusually high $PM_{2.5}$ sulfate (> $30{\mu}g\;m^{-3}$) marked on three days were probably affected by the air parcels coming from the Chinese continent, the natural sulfur in the remote marine atmosphere, and a large number of ships sailing on the nearby sea. The theoretical number concentration of $(NH_4)_2SO_4$ in $PM_{0.5-0.3}$ was originally calculated and then compared to $PM_{2.5}$ sulfate. A close resemblance between the diurnal variations of the theoretically calculated number concentration of $(NH_4)_2SO_4$ in $PM_{0.5-0.3}$ and $PM_{2.5}$ sulfate concentration indicates that the secondary formed $(NH_4)_2SO_4$ was the primary form of sulfate in $PM_{2.5}$ during our monitoring period.

미립 코발트분말 합성을 위한 polyol공정에서 비균질계 핵생성 반응 (Heterogeneous nucleations in the polyol process for the preparation of fine cobalt particles)

  • 김동진;정헌생;우상덕;이재장;안종관
    • 한국결정성장학회지
    • /
    • 제12권2호
    • /
    • pp.73-79
    • /
    • 2002
  • 코발트, 니켈, 구리 그리고 귀금속분말에 적용할 수 있는 polyol법은 균질한 크기와 형상을 갖는 금속분말합성에 매우 효과적인 공정이다 이 때 polyol은 용매, 환원제 그리고 보호제의 역학을 한다 $AgNO_3$글 촉매제로 첨가하여 비균질계 핵생성 반응을 야기할 경우 서브마이크폰 크기(0.5$\mu$m)의 코발트 분말을 한성학 수 있었다. 또한 촉매제인 Ag 핵의 수출 변화시키므로써 코발트 분말의 입도를 제어할 수 있음을 확인하였다.

Effects of Engine Loads on Exhaust Emissions and Particulate Matter with Morphological Characteristics in a Common Rail 4 Cylinder Diesel Engine

  • Roh, Hyun-Gu;Choi, Seuk-Cheun;Lee, Chang-Sik
    • 한국연소학회지
    • /
    • 제15권3호
    • /
    • pp.57-66
    • /
    • 2010
  • The purpose of this paper is to investigate the effects of fuel injection strategy and engine load on the structure and emissions characteristics of a DI diesel engine with 1.6L of piston displacement. In order to analyze the particulate matter (PM) and exhaust emissions characteristics in a direct injection diesel engine, the quantity of PM and exhaust emissions (including HC, CO and $NO_X$) were investigated under various injection strategies and engine loads. Two different injection strategies (one pilot/main injection and two pilots/main injection) was investigated under the various engine loads. A thermophoretic sampling method with a scanning electron microscope (SEM) were used to obtain the PM morphology (including primary particles, the size of the agglomerates, the number of agglomerates, the fractal dimension). The quantity of soot gradually increased with increasing engine load at both injection strategies. The primary particles in the PM agglomerates indicate that the average of the primary particle and radius of gyration increased as the engine load increased.

저탄소 마르텐사이트 강의 냉간압연과 온간압연을 통한 미세조직 개질

  • 이종철;강의구;이중원;오창석;김성준;남원종
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.274-277
    • /
    • 2009
  • There have been a number of works on manufacturing ultrafine grained steels with average ferrite grain sizes of smaller than a few micrometers to develop beneficial high strength steels. Among microstructures in low carbon steels, lath martensite is known to be useful to produce an ultrafine grained ferrite matrix and finely globular cementite particle. Thus, severe plastic deformation and subsequent annealing at lower temperature of lath martensite would become an effective way to produce ultrafine grained steels. However, most ultrafine grained steels exhibited a total elongation of a few per cent in tensile tests. Such a defect is one of the primary factors restricting the potential applications of ultrafine grained steels. Therefore, the improvement of the strength-elongation balance is required for the application of ultrafine grained structural steels. In this study, the effect of deformation temperatures on microstructure, such as ferrite grain size and the distribution of cementite particles, and mechanical property of lath martensite steels, was investigated. Specimens were fabricated through cold rolling or warm rolling and subsequent annealing.

  • PDF