• Title/Summary/Keyword: number average particle size

Search Result 87, Processing Time 0.033 seconds

Development of a nanoparticle multi-generator for assessment of inhalation hazard

  • Lee, Sung-Bae;Han, Jeong-Hee;Kim, Tae-Hyun;Cha, Hyo-Geun;Lim, Cheal-Hong
    • Analytical Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.87-98
    • /
    • 2021
  • In this study, we developed the nanoparticle multi-generator by 3D printer fusion deposition modeling (FDM) method that can reliably generate and deliver nanoparticles at a constant concentration for inhalation risk assessment. A white ABS filament was used as the test material, and SMPS was used for concentration analysis such as particle size and particle distribution. In the case of particle size, the particle size was divided by 100 nm or less and 100 to 1,000 nm, and the number of particles concentration, mass concentration, median diameter of particles, geometric average particle diameter, etc were measured. The occurrence conditions were the extruder temperature, the extruding speed of the nozzle, and the air flow rate, and experiments were conducted according to the change of conditions including the manufacturer's standard conditions. In addition, the utility of inhalation risk assessment was reviewed through a stability maintenance experiment for 6 h. As a result of the experiment, the size of the nanoparticles increased as the discharger temperature increased, as the discharge speed of the nozzle increased, and as the air flow rate decreased. Also, a constant pattern was shown according to the conditions. Even when particles were generated for a long time (6 h), the concentration was kept constant without significant deviation. The distribution of the particles was approximately 80 % for particles of 60 nm to 260 nm, 1.7 % for 1 ㎛ or larger, 0.908 mg/㎥ for the mass concentration, 111 nm for MMAD and 2.10 for GSD. Most of the ABS particles were circular with a size of less than 10 nm, and these circular particles were aggregated to form a cluster of grape with a size of several tens to several hundred nm.

Dispersion Polymerization of Acrylamide in Ethanol/water Media (에틸 알코올/물 혼합 용매에서 아크릴아미드의 분산 중합)

  • 이기창;이성은;송봉근
    • Polymer(Korea)
    • /
    • v.27 no.4
    • /
    • pp.358-363
    • /
    • 2003
  • Dispersion polymerization of acrylamide was carried out in the media of ethyl alcohol/water mixtures using hydroxypropyl cellulose and ammonium persulfate as steric stabilizer and initiator, respectively. The effects of concentrations of initiator and steric stabilizer, amount of monomer, polymerization temperature, ethyl alcohol/water ratio, and purification of monomer and nitrogen purge on the particle size of the latices and molecular weight of the polymers were investigated. The average particle diameter increased with increasing concentration of initiator, water content in ethyl alcohol/water media, and polymerization temperature, but decreased with monomer and stabilizer concentrations. The viscosity average molecular weight increased with increasing concentrations of monomer, steric stabilizer, and water content in dispersion media, but decreased with initiator concentration and polymerization temperature. The PAM polymers prepared with the purified monomer and the nitrogen purging before the reaction showed the highest molecular weight. In this study, PAM latices of 0.5∼2.4 $\mu\textrm{m}$ with 20000∼335000 in M$\_$v/ were prepared and the resulting PAM latices were all dissolved in water instantly.

The Effects of Cd particle size on the Properties of Cds/CeTe Solar Cells (Cd 입도 크기가 CdS/CdTe 태양전지의 특성에 미치는 영향)

  • Im, H.B.;Roh, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.200-202
    • /
    • 1987
  • Sintered CdS films on glass substrate with low electrical resistivity and high optical transmittance have been prepared by coating and sintering method. All-polycrystalline CdS/CdTe solar cells with different microstructure and properties of CdTe layer were fabricated by coating a number of CdTe slurries, which consisted of Cd and Te powders, an appropriate amount of propylene glycol and 2 or 7.5 w/o $CdC1_2$, on the sintered CdS films and by sintering the glass-CdS-(Cd+Te) composites at various temperature. To explore the dependence of the solar efficiency on the preparation conditions of the CdTe layer, Cd powder with an average particle size of $0.3{\mu}m$ or $5{\mu}m$ was prepared. The use of Cd with finer particles forms more dense or uniform microstructure of the nuclear of CdTe during the heating. Therefore the use of Cd with finer particles improves the efficiency of the sintered CdS/CdTe solar cell by improving the microstructure of sintered CdTe layer. But the difference of solar efficiency by varing a particle size of Cd is decreased with increasing amount of $CdC1_2$ in the (Cd+Te) layer. All-polycrystalline CdS/CdTe solar cells with an efficiency of 10.2% under solar irradiation have been fabricated using a Cd with finer particles.

  • PDF

Soot Size and Concentration Measurements in a Laminar Diffusion Flame Using a Lignt Scattering/Extinction Technique (광산란 소멸법을 이용한 층류확산화염내에 매연입자의 크기 및 농도 측정)

  • 하영철;김상수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1796-1804
    • /
    • 1992
  • Profiles of soot volume fraction, average diameter and particle number density have been measured using a light scattering and extinction technique in a coannular propane diffusion flame at atmosperic pressure. Temperature profiles were also obtained using a thermocouple technique. Measurements show that soot is first observed to form low in the flame in an annular region inside the main reaction zone. At higher locations this annular region widen until entire flame is observed to contain particles. Soot volume fraction and particle diameter profiles peak some 1mm on the fuel side of peak temperature and increase with height to oxidation region. Number density of the flame core drop steeply from formation region to growth region and relatively invariant to some height and decay out at flame tip.

Spraying Status Evaluation of the Electro-static Sprayer Using Computer Image Processing (컴퓨터 영상처리를 이용한 정전분무기의 분무상태 평가)

  • Hwang, H.;Cho, S. I.;Cho, D. Y.
    • Journal of Biosystems Engineering
    • /
    • v.24 no.5
    • /
    • pp.391-398
    • /
    • 1999
  • The spraying status of the electrostatic sprayer was evaluated by processing surface spraying images of the natural leaves. Water solution of the fluorescent material was used as a spray medium. The image of the lights reflected by fluorescent droplets was captured under UV light using a color CCD camera. Coverage rate, particle density, and the size distribution of particles were analyzed from the surface images of leaves under various spraying conditions such as spraying nozzle angle and object distance. Spraying characteristics of the electrostatic sprayer was evaluated in comparison with the conventional one. In a case of electrostatic sprayer, coverage rate and particle density increased by the average of 1.57times and 1.01times respectively under various nozzle angles and distances. The number of particle under the diameter of 50 ${\mu}{\textrm}{m}$ also increased significantly.

  • PDF

Preparation of Monosized Titanium Dioxide Powder from TEOT (TEOT로부터 $TiO_2$단분산 분말 합성에 관한 연구)

  • 안영필;최석홍
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.5
    • /
    • pp.509-517
    • /
    • 1988
  • The controlled Ti(CO2H5)4 hydrolysis reactions for the synthesis of Spherical Monodispersed Titania powders are described. Increasing the concentration of TEOT and the molar ratio of water to TEOT in alcohol solution decrease the reaction time and the particle size. The reaction time is delalyed by increasing the chain length and the number of carbon branches of alcohol as a solvent. The prepared powders with an average diameter of 0.8$\mu$ and the spherical monodispersed transfer to Rutile phase at 55$0^{\circ}C$.

  • PDF

A Study on the Measurement of the Concentration and the Size Distribution of Inclusions in the Molten Aluminum (용융 알루미늄내에서 개재물의 크기분포 및 농도측정에 관한 연구)

  • An, Jeong;Moon, Kwang-Ho;Lee, Kwang-Hak
    • Journal of Korea Foundry Society
    • /
    • v.14 no.1
    • /
    • pp.62-74
    • /
    • 1994
  • The concentration and particle size distribution of non-metallic inclusions which suspended in the molten aluminum at $700^{\circ}C$ were measured by using LiMCA apparatus. The result revealed that the number of inclusions increased with increasing the applied current or decreasing the orifice diameter, while decreased with increasing the purity of aluminum. And also, it was found that the number of inclusions increased with increasing the amount of boron added to molten aluminum. This was found to be attributed to the formation of the inclusions of TiB and $V_3B_2$. It was investigated that the average concentration of inclusions in a constant volume of 20ml of molten aluminum was increased in the order of pure molten aluminum, molten aluminum containing 20ppm of boron and molten aluminum used repeatly in the experimental casting in this study.

  • PDF

Preliminary Study on the Cloud Condensation Nuclei (CCN) Activation of Soot Particles by a Laboratory-scale Model Experiments

  • Ma, Chang-Jin;Kim, Ki-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.4
    • /
    • pp.175-183
    • /
    • 2014
  • To visually and chemically verify the rainout of soot particles, a model experiment was carried out with the cylindrical chamber (0.2 m (D) and 4 m (H)) installing a cloud drop generator, a hydrotherometer, a particle counter, a drop collector, a diffusing drier, and an artificial soot particle distributer. The processes of the model experiment were as follows; generating artificial cloud droplets (major drop size : $12-14{\mu}m$) until supersaturation reach at 0.52%-nebulizing of soot particles (JIS Z 8901) with an average size of $0.5{\mu}m$-counting cloud condensation nuclei (CCN) particles and droplets by OPC and the fixation method (Ma et al., 2011; Carter and Hasegawa, 1975), respectively - collecting of individual cloud drops - observation of individual cloud drops by SEM - chemical identifying of residual particle in each individual droplet by SEM-EDX. After 10 minutes of the completion of soot particle inject, the number concentrations of PM of all sizes (> $0.3{\mu}m$) dramatically decreased. The time required to return to the initial conditions, i.e., the time needed to CCN activation for the fed soot particles was about 40 minutes for the PM sized from $0.3-2.0{\mu}m$. The EDX spectra of residual particles left at the center of individual droplet after evaporation suggest that the soot particles seeded into our experimental chamber obviously acted as CCN. The coexistence of soot and mineral particle in single droplet was probably due to the coalescence of droplets (i.e., two droplets embodying different particles (in here, soot and background mineral particles) were coalesced) or the particle capture by a droplet in our CCN chamber.

Thermally Robust Highly Crosslinked Poly(methyl methacrylate-co-divinyl benzene) Microspheres by Precipitation Polymerization

  • Shim, Sang-Eun;Sunhye Yang;Hyejeon Jung;Soonja Choe
    • Macromolecular Research
    • /
    • v.12 no.2
    • /
    • pp.233-239
    • /
    • 2004
  • We prepared thermally robust fully crosslinked poly(methyl methacrylate-co-divinyl benzene) [poly(MMA-co-DVB)]microspheres successfully by precipitation polymerization in the absence of a stabilizing agent. The DVB concentration plays a pivotal role not only in the formation of the individually stable microspheres but also in the polymerization characteristics, including the particle size, the uniformity of size, the polymerization yield, and the thermal properties. The number-average diameter of the microspheres increased linearly, from 0.72 to 2.15 $\mu\textrm{m}$, and the particle size distribution became narrower, by elevating the uniformity from 1.35 to 1.12, as the DVB concentration increased from 20 to 75 mol%. In addition, the yield of the polymerization increased, from 73.4 to 98.6%, as the DVB concentration increased. Since the prepared particles possess fully crosslinked microstructures, no glass transition temperatures were observed, but all the samples prepared with DVB concentrations ranging from 20 to 75 mol% possess enhanced thermal properties. Based on the DSC and TGA data, the thermal stability of the mesospheres prepared by the precipitation polymerization is significantly improved as a result of crosslinking with DVB.

Numerical Simulation far the Non-Spherical Aggregation of Charged Particles (하전 입자의 비구형 응집 성장에 대한 수치적 연구)

  • Park, Hyeong-Ho;Kim, Sang-Su;Jang, Hyeok-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.227-237
    • /
    • 2002
  • A numerical technique for simulating the aggregation of charged particles was presented with a Brownian dynamic simulation in the free molecular regime. The Langevin equation was used for tracking each particle making up an aggregate. A periodic boundary condition was used for calculation of the aggregation process in each cell with 500 primary particles of 16 nm in diameter. We considered the thermal force and the electrostatic force for the calculation of the particle motion. The electrostatic force on a particle in the simulation cell was considered as a sum of electrostatic forces from other particles in the original cell and its replicate cells. We assumed that the electric charges accumulated on an aggregate were located on its center of mass, and aggregates were only charged with pre-charged primary particles. The morphological shape of aggregates was described in terms of the fractal dimension. In the simulation, the fractal dimension for the uncharged aggregate was D$\_$f/ = 1.761. The fractal dimension changed slightly for the various amounts of bipolar charge. However, in case of unipolar charge, the fractal dimension decreased from 1.641 to 1.537 with the increase of the average number of charges on the particles from 0.2 to 0.3 in initial states. In the bipolar charge state, the average sizes of aggregates were larger than that of the uncharged state in the early and middle stages of aggregation process, but were almost the same as the case of the uncharged state in the final stage. On the other hand, in the unipolar charge state, the average size of aggregates and the dispersion of particle volume decreased with the increasing of the charge quantities.